VIRTUAL INSTRUMENT
DEFINITION FILE

(VDFS)

AN OVERVIEW

Version 1.1

C. Gurgiolo
INTERNET: chris@cybernetl.com
Bitterroot Basic Research, Inc.

837 Westside Road
Hamilton, MT 59840-9369

1. VIDF

The Virtual Instrument Description File (VIDF) is the basic interface between the
Instrument Definition File System (IDFS) data sets and the generic IDFS access software. The
interface is nothing less than a complete description of the measurements contained within the
IDFS, details of the layout of the variable portions of the IDFS header and data records, a
complete set of parent instrument calibration files as are needed in the conversion of the stored
data to physical units, any additional constant values which may be needed in converting the
stored data to science units, and a comment section which may be used to describe the data, the
instrument and any caveats which a user should be aware of in its use.

The VIDF file itself is a rigidly formatted ASCII file which must converted to a binary
format prior to access by any of the generic IDFS routine. The format, which may seem
cumbersome and archaic now was developed many years ago and holds to its original form in
deference to the large number of defined VIDFs in the community today.

The following document will describe in detail how to create a VIDF file, or if you already
have a VIDF file, how to make changes to it.

1.1 VIDF File Format

Each entry in the VIDF consists of up to three fields of information. The first field is the
line specification format which must be one of the seven defined characters listed in the table
below.

FORMAT CHARACTER DEFINITIONS

CHARACTER l DEFINITION

n Null Entry Line

Beginning Line Of An Array Entry

Line Entries Are Stored as 4 Byte Values
Line Entries Are Stored as 2 Byte Values
Line Entries Are Stored as 1 Byte Values
Line Entries Are Stored as 79 Byte Strings
Line Entries Are Stored as 20 Byte Strings

Of the above definitions all require a second field of information with the exception of n
and m. The m identifier which is an array format specifier (precedes any VIDF field which is an
array of values or strings) must be followed by a pair of integers. The first or these specifies the
total number of values in the array and the second is the number of values on each input line.
The last line of an array need not contain the full number of values specified for a line.

The second field of information in a VIDF line are the values or text strings which define

VIDF June 1, 1998

the variable(s) being defined.

The last field in any entry is an optional comment field. Comments must come as the last
field in a line and are enclosed in * ... */ as:

/* this is a comment field */

An array of values is specified in the VIDF by an array format line (m) followed by N lines
of entries. An example VIDF array entry block is shown in the following table.

m 185 /* array Il
b 0 0 1 0 2 f* 00000-00004 %/
b 2 2 6 4 4 f* 00005-00009 */
b 0 0 8 8 8 /& 00010-00014 #*/
b 3 3 3 /A 00015-00017 %/

This defines an array of 18 elements, listed 5 elements per line. Each line in an array
specification begins with line specification format which denotes its storage size, followed by
values and the optional comment field used in this case as a simple value counter.

1.2 Building A VIDF File

The VIDF file consists of a set of entries laid down in a specified order. This allows a line
by line definition of the VIDF entries some of which may have multiple instances.

The VIDF is broken into three major sections, the VIDF BODY, which contains a base set
of information found in every VIDF file, an optional TABLE definition block and an optional
CONSTANT definition block. These latter two blocks contain the tables and constants necessary
in converting the IDFS telemetry to physical units. They are optional, although it is rare to find a
VIDF without a least a TABLE definition block. The notable exception to this are VIDF's
created for IDFS hles whose contents are already in physical units.

1.3 THE VIDF BODY

The following table shows the generic outline of a VIDF file, listing all of the VIDF fields
in the order required including the TABLE and CONSTANT blocks at the end. Each of these
fieids will be described in detail in the next sections with the TABLE and CONSTANT block
entries discussed in their own sections.

In the table the FORMAT CHAR column gives the expected line specification format
which should be the first field in all lines for the listed entry. The ENTRY SIZE column
indicates the number of values expected in the field. If the field is blank then only one value is
expected, otherwise the entry should be considered to be an array entry and must be preceded in
the VIDF by the array format line. In most cases the field size, when given, will be the value of
another VIDF entry. In this case the size is designated by the ENTRY ID of that VIDF entry.

3

VIDF

June 1, 1998

The ENTRY ID column gives the identifier as used in the read_idF generic routine to specify the
VIDF entry from which data is to be accessed.

BODY VIDF FILE FORMAT
FORMAT ENTRY ENTRY
ENTRY CHAR SIZE ID
PROJECT 1 _PROJECT
MISSION " _MISSION
EXPERIMENT 1 _EXP_DESC
VIRTUAL INSTRUMENT 1 “INST_DESC
CONTACT t 5 _CONTACT
NUMBER OF COMMENT LINES s _NUM_COMNTS
COMMENTS BLOCK : “COMMENTS | _COMMENTS
BEGINNING YEAR s _DS_YEAR
BEGINNING DAY s _DS_DAY
BEGINNING MILLISECOND 1 _DS_MSEC
BEGINNING MICROSECOND 1 _DS_USEC
ENDING YEAR s _DE_YEAR
ENDING DAY s “DE_DAY
ENDING MILLISECOND 1 _DE_MSEC
ENDING MICROSECOND 1 _DE_USEC
SENSOR FORMAT b “SMP_ID
TIMING) _SEN_MODE
MAXIMUM QUALITY DEFINITION b _N_QUAL
NUMBER OF ANCILLARY DATA SETS b “CAL_SETS
NUMBER OF VIDF TABLES b _NUM_TBLS
NUMBER OF VIDF CONSTANTS b _NUM_CONSTS
NUMBER OF STATUS BYTES b _STATUS
PITCH ANGLE DEFINED b _PA_DEFINED
NUMBER OF SENSORS s _SEN
MAXIMUM SCAN LENGTH s “SWP_LEN
MAXIMUM NUMBER OF SENSOR SETS s “MAX_NSS
SIZE OF DATA RECORD 1 _DATA_LEN
FILL VALUE DEFINED b FILL_FLG
FILL VALUE 1 TFILL
SCAN TIMING b _DA_METHOD
STATUS BYTE DESCRIPTIONS 1 _STATUS _STATUS_NAME
VALID STATUS RANGE b “STATUS _STATES
SENSOR DESCRIPTIONS ' _SEN _SEN_NAME
ANCILLARY DATA SET DESCRIPTIONS l _CAL_SETS _CAL_NAMES

VIDF June 1, 1998
BODY VIDF FILE FORMAT
FORMAT ENTRY ENTRY

3¢ CHAR SIZE ID
DATA QUALITY DESCRIPTIONS t _N_QUAL _QUAL_NAME
PITCH ANGLE FORMAT b _PA_FORMAT
MAGNETIC FIELD PROJECT T _PA_PROJECT
MAGNETIC FIELD MISSION T _PA_MISSION
MAGNETIC FIELD EXPERIMENT T _PA_EXPER
MAGNETIC FIELD INSTRUMENT T _PA_INST
MAGNETIC FIELD VIRTUAL INSTRUMENT T _PA_VINST
MAGNETIC FIELD COMPONENTS s 3 _PA_BXBYBZ
NUMBER OF TABLES TO APPLY [_PA_APPS
CONVERSION TABLES S _PA_APPS _PA_TBLS
CONVERSION OPERATIONS) _PA_APPS _PA_OPS
SENSOR DATA FORMAT b _SEN _D TYPE
DATA BIT LENGTH b _SEN _TDW_LEN
DATA STATUS b _SEN _SEN_STATUS
TIMING CORRECTIONS 1 _SEN _TIME_OFF
ANCILLARY USAGE b _CAL_SETS _CAL_USE
ANCILLARY BIT LENGTH b _CAL_SETS _CAL_WLEN
ANCILLARY TARGETS b _CAL_SETS _CAL_TARGET
TABLE DEFINITION BLOCKS _NUM_TBLS
CONSTANT DEFINITION BLOCKS NUM_CONSTS

1.4 THE VIDF BODY FIELD DESCRIPTIONS

Here begins a set of detailed descriptions of each of the VIDF body entries. These
descriptions will include how the entry is entered into the VIDF file, what it means, when it
should be changed, and how it is used by the Generic IDFS Software.

H 2 "THE LINEAGE BLOCK" The first four entries in the VIDF contain the lineage of the
virtual instrument described in the VIDF, This is the PROJECT, MISSION, EXPERIMENT and
VIRTUAL INSTRUMENT acronyms, These four names provide a unique means of identifying
any IDFS data source. It should be noted that the lineage of a virtual instrument within the VIDF
is slightly different than the lineage of a virtual instrument within the generic software which has
been developed to interface with the IDFS. The generic software operates on a five field lineage,
adding an INSTRUMENT field between the EXPERIMENT and VIRTUAL INSTRUMENT fields
in the VIDF.

1.4.1 PROJECT

The first entry in any VIDF file is the IDFS project specification. This entry begins with
the line specification format t and is followed by a maximum 79 character description of the
PROJECT with which the IDFS file is associated. A good rule here is to give the IDFS
recognized project acronym followed by an expansion of the acronym. In general the project

5

VIDF June 1, 1998

acronym is identical to the corresponding NASA acronym for the project. This field is not
actively used in the IDFS generic software.

Sampie PROJECT VIDF entry line:

t IMAGE (Imager For Magnetopause to Auroral Global Explorer) /* Project *f

1.4.2 MISSION

The next entry in the VIDF file is the IDFS mission specification. The entry begins with
the line specification format t and is followed by a maximum 79 character description of the
MISSION with which the IDFS file is associated. A good rule here is to give the IDFS
recognized mission acronym followed by an expansion of the acronym. In general the mission
acronym is identical to the corresponding NASA acronym for the mission. Note that when the
NASA PROJECT and MISSION acronyms are identical the IDFS mission generally has a "-1"
appended to the NASA MISSION acronym to indicate the first such MISSION under a
PROJECT. This field is not actively used in the IDFS generic software.

Sample MISSION VIDF entry line:

t IMAGE-1 [* Mission)

1.4.3 EXPERIMENT

This entry in the VIDF file is the IDFS experiment specification. The entry begins with the
line specification format t and is followed by a maximum 79 character description of the
EXPERIMENT from which the IDFS file data is associated. A pood rule here is to give the
IDFS recognized experiment acronym followed by an expansion of the acronym. In general the
experiment acronym is identical to the corresponding NASA recognized acronym for the
experiment. This field is not actively used in the IDFS generic software.

Sample EXPERIMENT VIDF entry line:

t HENA (High Energy Neutral Atom Imager) f* Exper e

1.4.4 VIRTUAL INSTRUMENT

This entry in the VIDF file is the IDFS experiment specification. The entry begins with the
line specification format t and is followed by a maximum 79 character description of the
VIRTUAL INSTRUMENT being defined. A good rule here is to at least give the virtual
instrument acronym which may or may not have an expanded meaning. If there is an expanded

6

VIDF June 1, 1998

meaning it should be given here. Note that a full definition of the virtual instrument contents is
generally given in the comment field and not here.

Sample VIRTUAL INSTRUMENT VIDF entry line:

t IMHACCUM IM(age)H(ena)ACCUM(ulator Data) i Vinst */

1.5 THE CONTACT BLOCK

The next six lines in the VIDF consitute the contact block.

1.5.1 CONTACT

The contact block is formed by the next 6 lines in the VIDE. The contant block itself is
considered to be an array of 5 lines. The first line in the contact block is the array specification
line of the form m § 1. The contact entries themselves follow in the next 5 lines.

The contact lines are free-form text and should contain at a minumum: the name(s) of
people who could be contacted in the case that a user has a question on some aspect of the
experiment or the data within the defined IDFS and their e-mail addresses.

Each of the five contact lines begins with the lien specification format t. Each line must be
present even if there is no information on it other than the format character and a comment field.
Each line in the contact entry block can contain a maximum 79 characters of text, which can be
followed by an optional the comment field.

The generic IDFS software makes no use of the VIDF contact information.

Sample VIDF Contact Block

m 51 /¥ CONTACT BLOCK #/
t chris gurgiolo /* LINE1 4/
t Bitterroot Basic Research, Inc. /* LINE2)
t 837 Westside Road /¥ LINE3)
t Hamilton, MT 59840-9369 * LINE4 */
t Internet: chris@bilbo.space.swri.edu /* LINES *f

1.6 THE COMMENT BLOCK

The following two entries form the VIDF comment block. This block is a free form set of
text which is nsed for all documentation of the VIDF not handled specifically within it plus any
comments relevant to the data contained within the the IDFS definition.

VIDF June 1, 1998

1.6.1 NUMBER OF COMMENT LINES

The first entry in the VIDF comment block specifies the number of lines of comments in
the Comment Section which is the next entry. The entry begins with the line specification format
s. This is followed by an integer specifing the number of comment lines to follow and then an
optional comment field. The generic IDFS software uses this entry in parsing the VIDE.

Sample NUMBER OF COMMENT LINES VIDF entry:

S 76 /* # Comnts *f

1.6.2 COMMENT BLOCK

This entry in the VIDF comprises the VIDF comments. If the number of comment lines
specified in the previous VIDF entry is O then this entry is empty and has the form of a NULL
line:

Sample EMPTY COMMENT BLOCK:

n T NO Comments *f

This is not normally the case. The VIDF comment entry is treated as an array N lines of
text, where N is the value specified in the NUMBER OF COMMENT LINES entry. The first
line of the comment entry is array format line of the form m N 1. Following this line are N lines
of comments. Each line begins with the format character t and is followed by up to 79 characters
of comment. An optional comment field may follow this.

The following list describes several items which are considered as good information to
include within the VIDF comment entry:

- a short description of the experiment;

a description of the measurements within the IDES;
a list of the tables found within this VIDF;

a description of how to apply the VIDF tables to arrive at different sets of units for the
various VIDF measurements;

a reference to the instrument paper for this experiment;
a CHANGE LOG documenting any change to the VIDF contents;

L]

The generic IDFS software makes no specific use of the VIDF comment entry information.

VIDF

Sample VIDF COMMENT BLOCK:

m76 1
t IMAGE:IMAGE-1:HENA:HENA:IMHACCUM

t

t The High Energy Neutral Atom (HENA) experiment is a part of the
t Imager For Magnetopause to Auroral Global Explorer (IMAGE)

t spacecraft. The experiment constructs images of the earth’s

t magnetosphere using energetic neutral atoms. The experiment has

t two sensors, one emphasing high-spatial resolution and the other

t emphasing high energy resolution.

t

t This IDFS data definition contains the HENA accumulator data.

t In addition to hardware that presents valid events to the DPU,

t there is hardware that couts the various pulses that are generated

t in the detectors. Because of false triggers and noise, these

t accumulsators count many more pulsed than are genuine events.

t There are 16 of these accumulators, each 24 bits long, compressed

t to 10 bits before transmission.

t

t The data is stored in 32 bit sensors, three measurements per

t sensor. The data must be unpacked before uncompressed. Both the
t unpacking of the data and uncompression are handled through tables
t contained in this VIDF

t

t The measurement locations within the five defined IDFS sensors

t are defined in the following table
t

t MEASUAREMENT SEN BITS
t

MEASURMENT(S) SEN

June 1, 1998

BITS

I

|
t Start Rate 0 20-29 ! Stop Rate
t Start Comp N 0 10-19 I Stop Comp N
t Start Coinc 0 0-9 I Stop Coinc
t Stop MCP Rate 2 20-29 b TOF MCP
t Coinc 2 10-19 I TOF SSD
t Energy Rate 2 0-9 I Full MCP
t Full SSD 4 20-29 |
t Valid Rate 4 10-19 I
t Transfer Rate 4 0-9 I

t

L L D = =

20-29
10-19
0-9
20-29
10-19

/*Comments*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

C000
C001
C002
C003
C004
C005
C006
Coo7
C008
C009
C010
€011
Co12
C013
C014
C015
C016
Co17
CO18
CO19
C020
€021
C022
C023
C024
C025
€026
Cco27
C028
C029
C030
C031
C032
C033
C034
C035
C036

*/
*/
*f
*/
*/
*/
*/
*/
*/
*/
*/
*/
*f
*
*
*
*f
*/
*/
*
*f
*/
¥/
*
*/
*
*/
*f
*/
*/
*/
*
*
*/
*/
*
*/

VIDF

June 1, 1998

t The following is a list of tables found in this vidf:

t

t TABLE 0: Decompression table for 10 bit compressed data

t TABLE 1: Byte Mask for bits 0-9

t TABLE 2: 10 bit shift right

t TABLE 3: 20 bit shift right

t

t To break out the individual data fields do the following table

t operations:

t

t Bit Field: applyTABLE(S) with OPERATION(S)

t e ——— ey

t 0-9 1 5

t 10-19 2,1 7,5

t 20-29 3,1 7.5

t

t The following can be extracted from this IDFS

t

t VALUE SEN TABLE(S) OPERATION(S) UNITS

t

t Start Rate 0 3,10 7,50 countsfaccum
t Start Comp N 0 2,1,0 7,50 counts/accum
t Start Coinc 0 1,0 5,0 counts/accum
t Stop Rate 1 3,1,0 7,50 counts/accum
t Stop Comp N 1 2,1,0 7.5.0 counts/accum
t Stop Coinc 1 1,0 50 counts/accum
t Stop MCP Rate 2 3,1,0 7,5,0 counts/accum
t Coinc 2 2,1,0 7.5,0 counts/accum
t Energy Rate 2 1,0 5,0 counts/accum
t TOF MCP 3 3,10 75,0 countsfaccum
t TOF SSD 3 2,1,0 75,0 counts/accum
t Full MCP 3 1,0 5,0 counts/accum
t Full SSD 4 3,1,0 7,50 counts/accum
t Valid Rate 4 2,1,0 7,50 counts/accum
t Transfer Rate 4 1,0 5,0 counts/accum

t

t To return same values but as raw telemetry - omit the last table
t and operation for each line above.

L

10

/*
/*
/*
/*
/*
,*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

C037
C038
C039
C040
C041
Co42
C043
C044
C045
C046
Co47
€048
C049
C050
C051
C052
C053
C054
C055
C056
C057
C058
C059
C060
C061
C062
€063
C064
C065
C066
Co67
C068
C069
C070
C071
C072
C073
C074
C075

*/
*/
*/
*
*/
*
*/
*/
*/
*
*/
*/
*
*f
*
*/
*/
*/
*/
*/
*/
*/
*f
*
*
*/
*/
*f
*/
*/
*
*/
*/
*/
*f
*/
*/
*/
*

VIDF June 1, 1998

1.7 THE VIDF VALID TIME BLOCK

Each VIDF file is valid only for the time pericd specified in the following 8 entries. For
the first or only VIDF associated with an IDFS data set, the beginning time is set to a time well
prior to the start of data. This is generally done by setting the beginning year entry to a small
value. Likewise for the last or only VIDF associated with an IDFS data, the ending time should
be set to a time well exceeding any expected data. This is generally done by setting the ending
year to a large value.

When multiple VIDFS are used, the ending time of the earlier VIDF in the sequence
should be set to the beginning time of the following VIDF.

1.7.1 BEGINNING YEAR

This entry lists the beginning year in which the VIDF information is considered to be
valid. If this is the first or only VIDF for this IDFS then it is good practice to set this year at
some time eariier than the first acquired data. If this VIDF is one in a sequence, and not the first
in the sequence then its beginning year should be set to the ending year of the previous VIDF in
the sequence.

The beginning year entry begins with the line specification format s followed by the year
and then an optional comment field. Years are in expanded format (not just last two digits) and
have a specified range of 1 to 9999.

Sample BEGINNING YEAR VIDF entry line:

s 1998 /* Valid beginning this year */

1.7.2 BEGINNING DAY

The next entry in the valid time block of VIDF data is the beginning day in the beginning
year on which the VIDF information is considered to be valid. If this is the first or only VIDF
for this IDFS and if the beginning year was set, as suggested, set to somne early time, then this
entry is generally set to 1. If this VIDF is one in a sequence, and not the first in the sequence
then its beginning day should be set to the ending day of the previous VIDF in the sequence.

The beginning day entry begins with the line specification format s followed by the day of
year in and then an optional comment field. Days have a valid range of 1 to 366.

Sample BEGINNING DAY VIDF entry line:

s 1 /¥ Valid beginning this day */

11

VIDF June I, 1998

1.7.3 BEGINNING MILLISECOND

The third entry in the valid time block of VIDF data is the beginning millisecond of day at
which the VIDF information is considered to be valid. If this is the first or only VIDF for this
IDFS and if the beginning year was set, as suggested, set to some early time, then this entry is
generaily set to 0. If this VIDF is one in a sequence, and not the first in the sequence then its
beginning millisecond should be set to the ending millisecond of the previous VIDF in the
sequence.

The beginning mililisecond entry begins with the line specification format | followed by the
millisecond of day and then an optional comment field. Milliseconds of day have a valid range of
0 to 86399999.

Sample BEGINNING MILLISECOND VIDF entry line:

10 /* Valid beginning this milliseconds */

1.7.4 BEGINNING MICROSECOND

The fourth entry in the valid time block of VIDF data is the beginning microsecond of day
at which the VIDF information is considered to be valid. In units of seconds, the beginning valid
time of day of the VIDF is formed from the beginning millisecond and beginning microsecond
times as:

sec = BegMsec * 107 + BegUsec * 107° (1

If this is the first or only VIDF for this IDFS and if the beginning year was set, as
suggested, set to some early time, then this entry is generaily set to 0. If this VIDF is one in a
sequence, and not the first in the sequence then the beginning microsecond offset should be set to
the ending microsecond of the previous VIDF in the sequence.

The beginning microsecond entry begins with the line specification format s followed by
the microsecond of day and then an optional comment field. Microseconds have a valid range of
0 to 1000.

Sample BEGINNING MICROSECOND VIDF entry line:

10 /* Valid beginning this microseconds */

12

VIDF June 1, 1998

1.7.5 ENDING YEAR

The next entry begins the specification of the time through which the VIDF information is
considered to be valid. If this is the last or only VIDF for this IDFS then it is good practice to set
this year at some time far after than the last acquired data or if the mission is still active, far after
the projected mission lifetime. If this VIDF is one in a sequence, and not the last in the sequence
then its ending year should be set to the beginning year of the next VIDF in the sequence.

The ending year entry begins with the line specification format s followed by the year and
then an optional comment field. Years are in expanded format (not just last two digits) and have a
specified range of 1 to 9999.

Sample ENDING YEAR VIDF entry line:

s 2050 /¥ Valid ending this year */

1.7.6 ENDING DAY

The next entry foilowing the ending year is the ending day on which the VIDF information
is considered to be valid. If this is the first or only VIDF for this IDFS and if the ending year was
set, as suggested, set to some far future time, then this entry is generally set to 1. If this VIDF is
one in a sequence, and not the last in the sequence then its ending day shouid be set to the
beginning day of the previous VIDF in the sequence.

The ending day entry begins with the line specification format s followed by the day of
year in and then an optional comment field. Days have a valid range of 1 to 366.

Sample ENDING DAY VIDF entry line:

s 1 /* Valid ending this day */

1.7.7 ENDING MILLISECOND

The third entry in the ending time portion of VIDF valid time block is the ending
millisecond of day at which the VIDF information is considered to be valid. If this is the first or
only VIDF for this IDFS and if the beginning year was set, as suggested, set to some far future
time, then this entry is generally set to 0. If this VIDF is one in a sequence, and not the first in
the sequence then its ending millisecond should be set to the beginning millisecond of the
previous VIDF in the sequence.

The ending millisecond entry begins with the line specification format | followed by the
miilisecond of day and then an optional comment field. Milliseconds of day have a valid range of
0 to 86399999.

13

VIDF June 1, 1998

Sample ENDING MILLISECOND VIDF entry line:

10 /* Valid ending this milliseconds */

1.7.8 ENDING MICROSECOND

The last entry in the valid time block of VIDF data is the microsecond of day at which the
VIDF information is considered to be valid. In units of seconds, the ending valid time of day of
the VIDF is formed from the ending millisecond and ending microsecond times as:

sec = EndMsec * 1072 + EndUsec * 1078 (1)

If this is the last or only VIDF for this IDFS and if the ending year was set, as suggested,
set to some far future time, then this entry is generally set to 0. If this VIDF is one in a sequence,
and not the first in the sequence then the ending microsecond offset should be set to the
beginning microsecond of the previous VIDF in the sequence.

The ending microsecond entry begins with the line specification format s followed by the
microsecond of day and then an optional comment field. Microseconds have a valid range of 0 to
1000.

Sample ENDING MICROSECOND VIDF entry line:

i0 /* Valid beginning this microseconds */

1.8 THE DATA SPECIFICATION BLOCK

The next two VIDF entries form the data specification block. These entries are used to
inform to the generic software of the type of sensor data found within the VIDF and how it flows
in time.

1.8.1 SENSOR FORMAT

This entry in the VIDF specifies the format of the sensor data. There are three different
data storage formats which are recognized by the IDFS generic software: full scan data, scalar
data, and partial scan data. The generic IDFS software uses this information in determining how
to return the data and what if any additional data needs to be returned in a request of sensor data.

Full scan data indicates that the sensor data forms an array of values, each value occurring
at some functional regularity. Full scan data are stored along with a scan step value which can be
used as an index in determining the scan parameter associated with the sensor data step. Because
scan data is an array of values, scan type sensors have a length associated with them which is the
number of steps needed to complete a sweep. Both the length and the scan steps returned can

14

VIDF June 1, 1998

vary within the IDFS data records. The do not need to be the full scan length. This information
is found in the IDFS header records. The terminology full scan is used to indicate that the a
complete scan of the data is acquired in each read, that is each sensor set in a IDFS data record
contains a full scan of data.

When reading data which has been classified as scanning data, the generic IDFS software
will return a full scan of data together with the scan indices. Both are returned as raw data and
must be converted to units before use. The generic will, also return a starting and stopping
azimuthal value for each scan step, and if applicable, a pitch angle.

The scalar designation indicates that the sensor contains data which have no associated
scan parameter. Temperatures, voltages, currents, and the like are measurements which generally
stored as scalar sensors.

The partial scan classification is much like the full scan except that a full scan of data may
overlay multiple sensor sets. In the current IDFS generic software release the treatment between
full scan and partial scan sensor is identical. This means that in a single read only a partial
sweep may be returned.

The sensor format entry begins with the line specification format b followed by the integer
sensor format value according to the table below:

SENSOR FORMAT FIELD DEFINITIONS
VALUE DEFINITION
0 PARTIAL SCAN
1 FULL SCAN
2 SCALAR

A comment field may follow the sensor format specification.
Sample SENSOR FORMAT entry line:

b 2 /* Sample ID (Scalar) */

1.8.2 TIMING

This VIDF entry defines how time flows within a sensor set of an IDFS data record and
allows the generic IDFS software to uniquely time tag all data in an IDFS sensor set by delta’ing
off the beginning time of of the sensor set.

A sensor set should be thought of as a two dimensional matrix of data values with
measurements (IDFS sensors) running across the columns and individual data values running
down the rows. All data in any individual sensor set column belong to the same measurement.
An example sensor set containing five separate measurements each with six measurements is

15

VIDF

shown below.

June 1, 1998

EXAMPLE SENSOR SET

SENSORS —
DATA |

SENO

SEN 1

SEN 2

SEN 3

SEN4

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

For SCALAR data each value down a column represents a single instance of a
measurement defined for an IDFS sensor. For FULL SCAN data, each measurement down a
column is one value in a sweep of data. Note that for FULL SCAN data the number of rows in

the sensor set matches the number of steps in the scan.

Within a sensor set time can advance either across the rows or down the columns. In
addition time across a row or down a column may advance either sequentially (one after the
other) or simultaneously (all at the same time). The IDFS timing field begins with the line
specification format b. This is followed by the IDFS timing value selected from one of the eight

definitions shown in the table below.

TIMING DEFINITIONS

TIMING TIME ADVANCES TIME ADVANCES TIME

VALUE IN ROW IN COLUMN ADVANCES
0 sequential sequential down column
1 sequential parallel down column
2 parallel sequential down column
3 parallel parallel down column
4 sequential sequential across row
5 sequential parallel across row
6 parallel sequential across row
7 parallel parailel across row

An optional comment block follows.

Note that some of the definitions in the above table are redundant.

16

For example, if the data

VIDF June 1, 1998

in both the row and column are acquired in parallel, as far as timing goes it doesn’t matter
whether time advances across the rows or down the columns.

The following are examples of different timing specifications and how the time flows
within the sensor set under each definition. In all examples the start time of a data value will be
represented by T; where a smaller i always represent an earlier time.

1.82.1 TIMING VALUE 2 or 6 The first example shows the flow of time when the VIDF timing
entry is set to either 2 or 6. Time between columns is parallel meaning that the measurements
from each sensor are taken simultaneously, while time advances down the rows. Since the data is
taken in parallel across the sensor set rows it does not matter if time is said to run down or across
the row as the same time for any given measurement will be arrived at in either case.

VIDF TIMING ENTRY SET TO 2 or 6 |
SEgiﬂ?fi'* SENO | SEN1 | SEN2 | SEN3 | SEN4
DATA 1 To Ty T, To To
DATA 2 T, T, T, T, T,
DATA 3 T, T, T, T, T,
DATA 4 T, T, T, T, T,
DATA 5 T, T, T, T, T,
DATA 6 T, T, T, Te T,

1.82.2 TIMING VALUE 4 The next example shows the flow of time when the VIDF timing
entry is set to 4. Time flows across the rows and advances with each successive row. It also
advances in moving down the columns, but its primary direction is across the rows.

VIDF TIMING ENTRY_SET TO 4
Sy ™ | sENo | sEN1 | sEw2 | sEN3 | sEN4
DATA 1 T, T, T T, T,
DATA 2 T, T, T Ty Ty
DATA 3 Tyo Ty Ty T3 T4
DATA 4 Ts T Ty Tig Tyo
DATA 5 T3 Ty T, Ty Ty
DATA 6 Tss T Ty Tag Ty

17

VIDF June 1, 1998

1.8.2.3 TIMING VALUES 1 AND 5 The last example shows the flow of time when the VIDF
timing entry is set to either 1 or 5. Time between rows is parallel meaning that the measurements
within each sensor are taken simuitaneously, but time advances from sensor to sensor since time
moves sequentially across the columns. Since the data is taken in parallel down a column it does
not matter if time is said to run down or across the row as the same time for any given
measurement will be arrived at in either case.

EXAMPLE SENSOR SET (SENMODES 2 or 6)
SENSORS —»
DATA J SEN O SEN1 SEN2 SEN3 SEN4
DATA 1 To T, T, T T,
DATA 2 Ty T, T, T, T,
DATA 3 T, T, T, T, T,
DATA 4 Ty T, T, T, T,
DATA 5 T, T, T, T, T,
DATA 6 To T, T, T, T,
Sample TIMING entry line:
b3 /* Sensor Mode (Parallel/Parallel)

1.9 THE INSTANCES BLOCKS

The next seven entries in the VIDF give the sizes or usage of the variable field blocks in
the VIDE. These are primarily used by the generic software to determine array sizes for holding
variables.

1.9.1 MAXIMUM QUALITY DEFINITION

This entry in the VIDF specifies the largest numerical value plus one (counting begins at
zero) which may be used in the IDFS data quality field in the IDFS header records. The data
quality field in the IDFS header holds a data quality specification for each column of data in a
sensor set. Each data quality field is 8 bits in size allowing for up to 256 independent quality
definitions. In general not all values are used. This entry may not necessarily the number of
defined quality definitions since it is possible that the quality definitions may not be represented

by a contiguous set of values. The actual textual definitions of the quality values is given later
under the VIDF QUALITY NAMES entry.

The number of quality definitions entry begins with the line specification format b. This is
followed by the largest defined quality flag value in the IDFS header records and an optional
cornment field.

18

*/

VIDF June 1, 1998

Sample NUMBER OF QUALITY DEFINITIONS VIDF entry line:

b 2 /* Num Quality Definitions */

1.9.2 NUMBER OF ANCILLARY DATA SETS

In the design of the IDFS there can be any number of ancillary data sets associated with
the IDES sensors. The definition of an ancillary data is all inclusive; that is each defined IDFS
sensor will have one instance of each defined ancillary data set associated with it.

Ancillary data is generally transmitted data which is needed to help take the sensor and or
scan data to science units. A simple example would be an automatic gain factor (AGC) which
would modify the current gain setting of an instrument at the time of measurement. The value is
needed in determining the translation from telemetry to physical units.

This entry in the VIDF defines the number of ancillary data sets defined within the IDFS.
The entry begins with the line specification format b followed by the integer number of defined
ancillary data sets and an an optional comment field.

The generic IDFS software uses this VIDF field in parsing the VIDF and in establishing
memory blocks within some the routines dealing with ancillary data sets.

Sample NUMBER OF ANCILLARY DATA SETS VIDF entry line:

b O /* Number of Calibration Sets */

1.9.3 NUMBER OF VIDF TABLES

The algorithms which take IDFS measurements to science units are built around the
application of tables of values to the data. The number of tables defined in the VIDF is given in
this VIDF entry. The entry begins with the line specification format b followed by the integer
number of defined tables in the VIDF and an optional comment field.

The generic IDFS software uses this VIDF field in parsing the VIDF and in establishing
certain memory blocks within some the routines dealing with the VIDF tables.

Sample NUMBER OF VIDF TABLE entry line:

b 4 /* Number of Tables in this VIDF */

19

VIDF June 1, 1998

1.9.4 NUMBER OF VIDF CONSTANTS

A VIDF may contain a number of constant definitions. These are sets of values with one
value defined per measurement (IDFS sensor). The number of constants defined is given in this
VIDF entry. The entry begins with the line specification format b foliowed by the integer
number of defined constants in the VIDF and an optional comment field.

The generic IDFS software uses this VIDF field in parsing the VIDF and in establishing
certain memory blocks within some the routines dealing with the VIDF constants.

Sample NUMBER OF VIDF CONSTANTS entry line:

b O /* Number of Constants in this VIDF */

1.9.5 NUMBER OF STATUS BYTES

Each IDFS definition can carry with it 0 to 255 status information bytes. These reside in
the IDFS header records. These are generally used to provide variable offsets into IDFS tables
based on an experiment state. This VIDF field gives the number of status bytes defined for this
virtual instrument.

The VIDF entry begins with the line specification format b followed by the integer number
of status bytes in each IDFS header record and an optional comment field.

The generic IDFS software uses this VIDF field in parsing the VIDE.

Sample NUMBER OF STATUS BYTES entry line:

b0 /* Number of Status bytes in IDFS */

1.9.6 PITCH ANGLE DEFINED

The VIDF can carry with it information on how to compute the pitch angles for an IDFS
data set should that be applicable and should the magnetic field data be available in IDFS format.
This VIDF entry indicates if that definition is present in the VIDF and should be used.

This entry is used by the generic software both in parsing the VIDF and to determine if it
must return pitch angles with measurements stored under this IDFS definition.

The pitch angle defined entry begins with the line specification format b followed by a 0 if
the no pitch angie information is contained within he VIDF and 1 if pitch angle information is
contained within the VIDE. An optional comment field may follow.

20

VIDF June 1, 1998

Sample PITCH ANGLE DEFINED entry line:

b 0 /* Pitch Angle Defined (No) */

1.9.7 NUMBER OF SENSORS

This VIDF entry contains the number of sensors defined within the IDFS definition. Not
all defined sensors need not be returned within each IDFS sensor set. Which subset of the
sensors are returned are indicated within the sensor_index field in the header record for that
particular sensor set. This VIDF entry gives the maximum number of sensors defined for this
IDFS and hence which could be returned within a single sensor set.

This field is used by the generic software primarily in parsing the VIDFE.

The number of sensors VIDF entry begins with the lien specification format s followed by
the maximum number of sensors defined in the IDFS and an optional comment field.

Sample NUMBER OF SENSORS entry line:

s 5 /* Number of Sensors in IDES #/

1.10 THE HEADER/DATA INFORMATION BLOCK

The following VIDF entries contain information on the sizes of fields within the IDFS data
and header records as well as information on a usable fill value and the timing method to be
employed between adjacent steps within a scan of data. All of these entries are used by the IDFS
generic software to set up data access and timing.

1.10.1 MAXIMUM SCAN LENGTH

This VIDF entry defines the maximum array length which a scanning sensor can have. It
is not necessary that any of the sensors within the IDFS definition ever return the maximum scan
length only that it may.

The generic IDFS software uses this value to determine the number of elements to retrieve
from a lookup table which is being used to expand the elements in the header scan_index array.

If the VIDF Sensor Format eniry has been set to SCALAR, then the Maximum Sweep
Length should be set to 1.

The Maximum Sweep length VIDF entry begins with the line specification format s
followed by an integer number maximum elements in a scan and then by a optional comment
field.

21

VIDF June 1, 1998

Sampie MAXIMUM SCAN LENGTH VIDF entry:

s 1 /* Maximum # of scan steps */

1.10.2 MAXIMUM NUMBER OF SENSOR SETS

This entry in the VIDF gives the maximum number of sensor sets which can exist in a data
record. The value is used in the IDFS generic software in determining the start of the IDFS data
field within the data record. Note that any given data record may only use a subset of this
number in the storage of the data within its data area.

This VIDF entry begins with the line specification format s followed by an integer value
specifying the maximum number of sensor sets in a data record and an optional comment field.

Sample MAXIMUM NUMBER OF SENSOR SETS entry:

s 5 /¥ Maximum # of sensor sets in IDES #/

1.10.3 SIZE OF DATA RECORD
This entry in the VIDF file lists the size in bytes of the IDFS data record. The data record
size for in any IDFS definition is fixed in length.

The value is used in the IDFS generic software in reading the IDFS data file and in setting
up certain memory blocks.

This VIDF entry begins with the line specification format | followed by the value
specifying the byte size of the data record, and an optional comment field.

Sample SIZE OF DATA RECORD entry:

1 1456 /¥ Length of IDFS data record */

1.10.4 FILL VALUE DEFINED

This entry in the VIDF file specifies whether there is a defined fill value for the IDFS. The
fill value if it exists is specified in the VIDF entry line. If no fill value exists, this VIDF entry is 0
and if there is a defined fill value, the entry is set 1.

The value is used in the IDFS generic software in determining if the next field which
contains the fill value exists or not.

This VIDF entry begins with the line specification format b followed by a 0 or 1 as defined
above to indicate if a fill value has been defined or not and then by an optional comment field.

22

VIDF June 1, 1998

Sample FILL VALUE DEFINED VIDF entry:

b 0 /* Fill Flag defined (No) */

1.10.5 FILL VALUE

This VIDF entry specifies the value used in the IDFS data to represent FILL DATA. This
field is used only if the VIDF FILL VALUE DEFINED entry above has been set to 1. If there
is no fill value defined then the VIDF entry begins with the null format (n) and may be followed
by an optional comment field.

Sample Null FILL VALUE VIDF entry:

n /* Fill Value (not used) */

When a Fill Value is defined, this VIDF entry begins with the line specification format I
followed the integer fill value and then by an optional comment field.

Sample FILL VALUE VIDF entry for defined fill value:

1 255 [Fill Value 7/

1.10.6 SCAN TIMING

This entry in VIDF establishes the timing algorithm used in determining the starting time
and ending time of any element within a sensor which was defined to hold SCAN data. The field
has no meaning if the IDFS data has been declared SCALAR. In the latter case the field value
should be set to 0.

As implied, the IDFS generic software uses this value to determine the appropriate
algorithm to used to determine the start and stop times applied to each element in a set of SCAN
data.

The Scan Timing VIDF entry begins with the line specification format b followed by an
integer between 0 and 3 which represents the timing algorithm to use as outlined in the sections
below and an optional comment field.

Sample MAXIMUM SCAN TIMING VIDF entry:

b 0 /* Timing Method (Accum + Lat) */

23

VIDF June 1, 1998

1.10.6.1 Scan Timing Algorithms Before beginning a detailed explanation of the algorithms
used in determining the start and stop time of elements in a sensor scan, it is necessary to briefly
review the definitions of some of the pertinent header record fields which are associated with
IDFS timing and SCAN type sensors since these fields enter into the algorithm descriptions.
This is done in the table below and a more complete definition of each field can be found in this
document under the section HEADER RECORD FIELDS.

IMPORTANT HEADER RECORD FIELDS
FIELD DEFINITION
DataAccum Defines the time during which a measurement occurs
DataLat Defines the latency time associated with a measurement
NSamples Defines the number of elements with a SCAN
ScanIndex An integer array indicating which scan steps are returned

There are four valid DATA TIMING VIDF entry values (0 through 3). Each represents a
different algorithm to use in determine the timing within a SCAN of data. These are described in
the sections below and will be illustrated using an example case of a sensor defined to have the
following characteristics:

FIELD VALUE(s) DEFINITON
MAXIMUM SCAN LENGTH 64 Maximum number of scan steps
TIMING 0,2,4,0r6 Sequential in direction of scan
NSamples 10 Ten of possible 64 scan step are returned
Scanindex 1,5,9,..37 These 10 steps are being returned

1.10.6.2 DATA TIMING FOR ALGORITHM 0 In this definition each element in a scan is
assumed to have been acquired within the time given in the header field DataAccum. The time
between successive elements in the scan is computed by

At = DataAccum + Datalat

If a scan has been defined to be acquired sequentially, that is time advances from scan
element to scan element, then the beginning time of any element N in the scan is determined by

Ty =Ty + NAt

24

VIDF June 1, 1998

where T is the beginning time of the first element in the scan. Note that the above algorithm
does not depend on which scan steps are being returned but only on the index number in the
scan. Discontinuities in the scan step which would be indicated in the Scanlndex do not come
into play here.

The total time of the scan (start to finish) is given by

T,.an = NSamples * At

Using the example scan given above, the beginning times for the first five elements in the
scan and the total time to complete the scan are:

SCAN ELEMENT TIME
0 Ty
1 Ty + At
2 T, + 2At
3 Ty + 3At
5 Ty + 4At
TOTAL 10Ar

1.10.6.3 DATA TIMING FOR ALGORITHM 1 In this definition each element in a scan is
assumed to have been acquired within the time given in the header field DataAccum. The time
between successive elements in the scan is computed by

At = DataAccum + Datalat

,P The difference between this and the algorithm described under algorithm 0 is that in this
definition it is assumed that all possible steps have been acquired but that only a subset of them
have been returned. The steps not returned form an effective dead time or additional data latency
between the returned steps.

If a scan has been defined to be acquired sequentially, then the beginning time of any
element N in the scan is determined by

Ty = Ty + Scanlndex[N] * At
where T is the beginning time of the first element in the scan.

The total time of the scan (start to finish) is given by

25

VIDF June 1, 1998

Ts..» = MaxScanLen * At

where MaxSwpLen is the Maximum Scan Length as obtained from the VIDE

Using the example scan introduced above, the beginning times for the first five elements
in the scan and the total tirne to compiete the scan are:

SCAN ELEMENT TIME
0 Ty
1 To + At
2 To + 5At
3 Ty + 9At
5 Ty + 13At
TOTAL 64At

1.10.6.4 DATA TIMING FOR ALGORITHM 2 The timing algorithm used in algorithm 2 is
identical to that used in algorithm 1 with the exception that the time duration of a whole sweep is
assumed to last only from the first to last step contained within the array Scanlndex in the
header record.

As in algorithm 1 the time between successive elements in the scan is computed by

At = DataAccum + DataLat

The beginning time of any element N in the scan is determined by
Ty = Ty + Scanlndex[N] * Ar

where T, is the beginning time of the first element in the scan.

The total time of the scan (start to finish) however is found by

T,an = (MaxScanStep — MinScanStep + 1) * At

where MaxScanStep is the largest scan step indicated in ScanIndex and MinScanStep is the
smallest scan step indicated in ScanIndex.

Using the example scan introduced above, the beginning times for the first five elements
in the scan and the total time to complete the scan are:

26

VIDF June 1, 1998

SCAN ELEMENT TIME

Ty

Ty + At
Ty + SAt
Ty + 9At
Ty + 13At
AL 37At

QUILJ-IM_-O

T

1.10.6.5 DATA TIMING FOR ALGORITHM 3 The use of this algorithm is restricted to SCAN
sensors whose elements are evenly spaces within the total number of scan steps available. This is
equivalent to requiring that each element in the ScanIndex array be able to be determined by an
algorithm of the form.

Scanlndex[J] = J * SKIP + ScanIndex[{]

In the example scan, SKIP would be 4.

Basically this algorithm is identical to that of algorithm O with a different definition of Ar.
In this algorithm each element in the vector is acquired within the time DataAccum * SKIP and
the time between successive elements is given by

At = SKIP * DataAccum + Datal.at
The beginning time of any element N in the scan is determined by
Ty =Ty + N * At

where T is the beginning time of the first element in the scan.

The total time of the scan (start to finish) is now found by

TSCGH = N * At

Using the example scan introduced above, the beginning times for the first five elements
in the scan and the total time to complete the scan are:

27

VIDF June 1, 1998

SCAN ELEMENT TIME
0 Ty
1 Ty + At
2 Ty + 2At
3 Ty + 3At
5 Ty, + 4At
TOTAL 10At

1.11 THE VIDF NAME BLOCK

The next set of entries in the VIDF give textual descriptions for all of the IDFS data fields
and for the data quality definitions. Each set of descriptions forms an array of information with
the offset into that array being the description of the corresponding IDFS data element. Hence
the 6th entry in the SENSOR DESCRIPTIONS field would give the description for VIDF
sensor 5 (counting from 0).

1.11.1 STATUS BYTE DESCRIPTIONS

If the NUMBER OF STATUS BYTES entry in the VIDF is zero then there are no defined
status bytes in the IDFS definition. In this case this is a null entry. The entry begins with the
format character n and may be followed by an optional comment field.

Sample Null STATUS BYTE DESCRIPTION entry:

0 /* NO Status Bytes ¥/

If the NUMBER OF STATUS BYTES field in the VIDF is non-zero then this entry
contains a description of the contents of each of the status bytes in the IDFS. The field is treated
as an array of character strings, one per status byte. The VIDF entry begins then with the array
format specification line. The array specification is m N 1 where N is m N 1 where N is the
number of defined status bytes. An optional comment field may follow on the line. This line is
followed by the N lines of text. Each of the text lines begins begins with the line specification
format character t followed by up to 79 characters of descriptive text and an optional comment
field.

Sample STATUS BYTE DESCRIPTION entry:

m21 /¥ Status Byte Names */
t GCD Table Index * S0 */
t TDIFOV Binning Factor ”* Sl *f

28

VIDF June 1, 1998

1.11.2 VALID STATUS RANGE

If the NUMBER OF STATUS BYTES entry in the VIDF is zero then there are no defined
status bytes in the IDFS definition. In this case this is a null entry. The line begins with the line
specification format n and may be followed by an optional comrnent field.

Sample Null VALID STATUS RANGE entry:

n /* NO Status Bytes */

If the NUMBER OF STATUS BYTES entry in the VIDF is non-zero then this VIDF
entry contains the valid range of each individual status byte. This is an array entry and begins
with the array format specification line. The array specification is m N M where N is the number
of defined status bytes and M is the number of values per full line. An optional comment block
may follow on the line. This line is followed by one or more lines of values. Each of these lines

begins with the line specification format b followed by up to M values and an optional comment
field.

Sample VALID STATUS RANGE entry:

The entry shows IDFS with 7 defined status bytes Each entry is the
total range of each status byte. Since status bytes are by definition
8 bits in length, the range for any status byte cannot exceed 256.

m77 e Status Byte Ranges e
b 128 3 256 4 8 128 64 /* SO */

1.11.3 SENSOR DESCRIPTIONS

This VIDF entry field contains a description of the contents of each of the defined IDFS
sensors. The field is treated as an array of character strings, one per sensor. The field begins
then with the array format specification line. The array specification is m N 1 where N is the
number of defined IDFS sensors. An optional comment block may follow on the line. This line
is followed by N lines of text, one per sensor. Each of the description lines begins begins with
the line specification format t followed by up to 79 characters of descriptive text and an optional
comment field.

29

VIDF June 1, 1998

Sample SENSOR DESCRIPTION entry:

m351 /¥ Sensor Names */
t Electron Sensor, Spectrometer | (Boom Mounted) /* S0 */
t Electron Sensor, Spectrometer 2 (Boom Mounted) /* Sl */
t Electron Sensor, Spectrometer 3 (Satellite Mounted) /% S2 */
t Electron Sensor, Spectrometer 4 (Satellite Mounted) /* 83 */
t Electron Sensor, Spectrometer 5 (Satellite Mounted) /* S4 &/

1.11.4 ANCILLARY DATA SET DESCRIPTIONS

If the NUMBER OF ANCILLARY DATA SETS field in the VIDF is zero then there are
no defined ancillary data sets in the IDFS definition. In this case this is a null entry. The line
begins with the line specification format n and may be followed by an optional comment block.

Sample Null ANCILLARY DATA SETS DESCRIPTION entry:

n /¥ NO Ancillary Data Sets */

If the NUMBER OF ANCILLARY BYTES field in the VIDF is non-zero then this VIDF
entry contains a description of the contents of each of the defined IDFS ancillary data sets. The
field is treated as an array of character strings, one per ancillary data set. The entry begins then
with the array format specification line. The array specification is m N 1 where Nis m N 1
where N is the number of defined ancillary data sets. An optional comment block may follow on
the line. This line is followed by N lines of text, one per ancillary data set. Each of the
description lines begins begins with the line specification format t followed by up to 79
characters of descriptive text and an optional comment field.

Sample ANCILLARY DATA SET DESCRIPTION BLOCK:

mll /¥ Ancillary Data Names */
t Automatic Gain Correction Data /% AQ */

1.11.5 DATA QUALITY DESCRIPTIONS

This VIDF field contains a quality description associated with all possible values
associated with the IDFS quality flags. The field is treated as an array of character strings, one
data quality value. and only goes to the maximum data quality value as defined in the
MAXIMUM QUALITY DEFINITION VIDF field. The entry begins with the array format
specification line. The array specification is m N 1 where N is m N 1 where N is the number of

30

VIDF June 1, 1998

defined quality definitions. An optional comment block may follow on the line. This line is
followed by N lines of text, 79 characters of descriptive text and an optional comment field. If
there is no quality definition associated with a particular quality value that line may entered as a
textiess line.

Sample DATA QUALITY DESCRIPTION entry shown a textless line
for quality value 2.

m41] /* Quality Definitions */
t Full Image Received /* QO */
t Upper Half of Image Only Received * Ql *f
t /* Q2 */
t Lower Half of Image Only Received * Q3 o

1.12 THE PITCH ANGLE DEFINITION BLOCK

The next ten entries within the VIDF are only defined if the VIDF PITCH ANGLE
DEFINITION entry has been set to 1. They define how to access the magnetic field data which
is used to compute the pitch angles associated with a set of particle data.

The pitch angle is computed as the dot product of the unit normal to the detector aperture

with the local magnetic field (1).
_1 ﬁ ‘ §
a = CoS - N
INIBI

In the equation $alpha$ is the pitch angle and N is the unit normal. The magnetic field is
assumed to be given in the same coordinate system as the unit normal and the Unit Normal
Vector components N must be given as set of constant definitions in the VIDF CONSTANT
FIELD BLOCK.

1.12.1 PITCH ANGLE FORMAT

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there are no defined
pitch angle computations in the IDFS definition. In this case this VIDF entry is set to a null field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL PITCH ANGLE FORMAT entry:

n /* NOPA Defined */

31

VIDEF June 1, 1998

If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry is an
integer value which indicates which algorithm should be used in computing the pitch angle.
Currently there is only the one algorithm as given above for computing the pitch angle. This
field should then be set to one.

Sample PITCH ANGLE FORMAT entry:
b1 /* Valid Pitch Angle Format */
1.12.2 MAGNETIC FIELD PROJECT
If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry is set to a null entry.

The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL MAGNETIC FIELD PROJECT entry:
a /* NOPADefined */
If the PITCH ANGLE DEFINITION field in the VIDF is one then this field gives the
IDFS PROJECT acronym for the IDFS data set which contains the magnetic field vector to be

used in the pitch angle computation. The entry begins with the line specification format T
followed by an IDFS PROJECT acronym and then an optional comment field.

Sample MAGNETIC FIELD PROJECT FIELD:

T TSS /* Magnetic Field PROJECT */

1.12.3 MAGNETIC FIELD MISSION

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDES definition. In this case this VIDF entry is set to null field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL MAGNETIC FIELD MISSION entry:

n /¥ NO PA Defined ¥/

32

VIDF June i, 1998

If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry gives the
IDFS MISSION acronym for the IDFS data set which contains the magnetic field vector to be
used in the pitch angle computation. The entry begins with the line specification format T
followed by an IDFS MISSION acronym and then an optional comment field.

Sample MAGNETIC FIELD MISSION entry:

T TSS-1R /* Magnetic Field MISSION */

1.12.4 MAGNETIC FIELD EXPERIMENT

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry is set to null field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL MAGNETIC FIELD EXPERIMENT entry:

n /* NOPADefined */
If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry gives the
IDFS EXPERIMENT acronym for the IDFS data set which contains the magnetic field vector to

be used in the pitch angle computation. The entry begins with the line specification format T
followed by an IDFS EXPERIMENT acronym and then an optional comment field.

Sample MAGNETIC FIELD EXPERIMENT entry:

TTEMAG {*Magnetic Field EXPERIMENT*/

1.12.5 MAGNETIC FIELD INSTRUMENT

If the PITCH ANGLE DEFINITION field in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry is set to null field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL MAGNETIC FIELD INSTRUMENT entry:

n /¥ NOPA Defined */

33

VIDF June 1, 1998

If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry gives the
IDFS INSTRUMENT acronym for the IDFS data set which contains the magnetic field vector to
be used in the pitch angle computation. The entry begins with the line specification format T
followed by an IDFS INSTRUMENT acronym and then an optional comment field.

Sample MAGNETIC FIELD INSTRUMENT entry:

TTEMAG /*Magnetic Field INSTRUMENT#*/

1.12.6 MAGNETIC FIELD VIRTUAL INSTRUMENT

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry is set to null field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

Sample NULL MAGNETIC FIELD VIRTUAL INSTRUMENT entry:

n /¥ NO PA Defined *f

If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry gives the
IDFS VIRTUAL INSTRUMENT acronym for the IDFS data set which contains the magnetic
field vector to be used in the pitch angle computation. The entry begins with the line
specification format T followed by an IDFS VIRTUAL INSTRUMENT acronym and an optional
comment field.

Sample MAGNETIC FIELD VIRTUAL INSTRUMENT entry:

T TMMO /* Magnetic Field VIRTUAL INSTRUMENT */

1.12.7 MAGNETIC FIELD COMPONENTS

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry is set to nuil field.
The entry begins with the line specification format n and may be followed by an optional
comment field.

34

VIDF June 1, 1998

Sample NULL MAGNETIC FIELD COMPONENTS entry:

n f* NO PA Defined ®f

If the PITCH ANGLE DEFINITION entry in the VIDF is one then this entry is an array
of length 3 which gives the three VIDF sensor numbers which contain the BX, BY, and BZ
magnetic field components in the IDFS data set identified in the above five fields.

As an array, the first line in the entry is the array format specification. For this entry this is
m 3 3. An an optional comment field may follow. The next line in the entry begins with the line

specification format s followed by the three VIDF sensor numbers and an optional comment
field.

Sample MAGNETIC FIELD COMPONENTS entry:

lccclll
m33 /* Magnetic Vector Components */
] 013 /* Bx By and Bz Sensors */

1.12.83 NUMBER OF TABLES TO APPLY

If the PITCH ANGLE DEFINITION entry in the VIDF is zero then there is no defined
pitch angle computation in the IDFS definition. In this case this VIDF entry TO APPLY is set to
null field. The entry begins with the line specification format n and may be followed by an
optional comment field.

Sample NULL NUMBER OF TABLES TO APPLY FIELD:

n /* NOPA Defined */

If the PITCH ANGLE DEFINITION field in the VIDF is one then this entry lists the
number of tables which will be applied in the conversion of the IDFS magnetic field data to
science units. The line begins with the line specification format s followed by the integer
number(s) of tables which will be used and an optional comment field.

Sample NUMBER OF TABLES TO APPLY entry:

s 2 /* Number of Tables */

35

VIDF June 1, 1998

1.12.9 CONVERSION TABLES

If the PITCH ANGLE DEFINITION entry in the VIDF is zero or if the NUMBER OF
TABLES TO APPLY entry in the VIDF is zero, then either there is no defined pitch angle
computation in the IDFS definition or not tables to define. In either case this VIDF entry is set to
a null entry. The entry begins with the line specification format n and may be followed by an
optional comment field.

Sample NULL CONVERSION TABLES entry:

n /* NO PA Defined */

If the PITCH ANGLE DEFINITION field in the VIDF is one and if the NUMBER OF
TABLES TO APPLY entry in the VIDF is not zero then this entry is an array of NUMBER OF
TABLES TO APPLY and contains the VIDF table numbers that will supplied to the generic
convert_to_units routine and used irn converting convert the IDFS magnetic field data to
scientific units.

As an array, the first line in the entry is the array format specification. For this entry this is
m N M where M is the number of tables being listed and N is the number of values per line. The
next line The next N lines in the entry begin with the line specification format s followed by the
up to M integer values. An optional comment field may follow.

Sample CONVERSION TABLES entry:

fcclll
m22 /* 2 Conversion Tables =]
s 01 /* Conversion Tables *f

1.12.10 CONVERSION OPERATIONS

If the PITCH ANGLE DEFINITION entry in the VIDF is zero or if the NUMBER OF
TABLES TO APPLY entry in the VIDF is zero, then either there is no defined pitch angle
computation in the IDFS definition or not tables to define. In either case this VIDF entry is set to
a null entry. The entry begins with the line specification format n and may be followed by an
optional comment field.

Sample NULL CONVERSION OPERATIONS entry:

n /¥ NOPADefined */

36

VIDF June 1, 1998

If the PITCH ANGLE DEFINITION field in the VIDF is one and if the NUMBER OF
TABLES TO APPLY entry in the VIDF is not zero then this entry is an array of NUMBER OF
TABLES TO APPLY and contains the IDFS algorithm operations associated with each of the
tables listed in the above entry. These are supplied to the generic convert_to_units routine and
used in converting the IDFS magnetic field data to scientific units.

As an array, the first line in the entry is the array format specification. For this entry this is
m N M where M is the number of operations being listed and N is the number of values per line.
The next line The next N lines in the entry begin with the line specification format s followed by
the up to M integer values. An optional comment field may follow.

Sample CONVERSION OPERATIONS entry:

lcclll
m22 /¥ 2 Conversion QOperations */
s 03 J = then * e

1.13 THE SENSOR DATA INFORMATION FIELDS

The next four VIDF entries, each an array of size NUMBER OF SENSORS, give
information concerning the IDFS sensor data. This data is used by the generic software in
obtaining and processing the sensor data.

1.13.1 SENSOR DATA FORMAT

This entry is an array of length NUMBER OF SENSORS and gives the data format of
each measurement associated with the IDFS sensors. Sensors within a given IDFS definition are
allowed to have different formats which are taken into account on access.

There are currently seven recognized formats which are given in the table below. Of these,
the double precision format (VALUE = 3) has not been implemented within the current IDFS
generic software release.

37

VIDF June 1, 1998

DATA FORMATS FIELD DEFINITIONS

VALUE DEFINITION
0 unsigned integer, binary data
1 signed integer, binary data
2 single precision, floating point data
3 double precision, floating point data
4 half precision 1, floating point data
5 half precision 2, floating point data
6 half precision 3, floating point data

The SENSOR DATA FORMAT VIDF entry begins with the array format specification.
For this entry this is m M N where M is the number of IDFS sensors and N is the number of
values per line. An optional comment field may follow. This line is followed by one or more
lines each of which begins with the line specification format b followed by up to M values and an
optional comment field.

Sample SENSOR DATA FORMAT entry:

m77 [* Sensor Data Formats *f
b 0 0 0 1 2 2 0 f* 0-6 */

1.13.1.1 Details of the IDFS Floating Point Representations The IDFS has its own internal
floating point representation. All of the IDFS floating point data representations are expanded
into native machine floating point values using the formula

baseE&’PONENT—:ig

Value = (MANTISSA + highbit) *

norm

The parameters for each representation are outlined in the following table. Both the
MANTISSA and EXPONENT bit lengths include the sign bits.

38

VIDF June 1, 1998

I IDFS FLOATING POINT REPRESENTATION PARAMETER DEFINITIONS

Word |MANTISSA [EXPONENT —)
FORMAT! it Lengin| Bit Length | Bit Lengn L Lol norm
2 | 32 24 8 0 10(7 1
3 4 55 9 0 10116 1
3 16 g 8 0 02 1
3 16 g 8 128 2 (128 256
p o . ; (EXPONENT=0)0 | , | o | (EXPONENT=0) I
(EXPONENT > 0) 256 (EXPONENT > 0) 512

1.13.1.2 Single Precision Bit Layout Single precision floating point data is stored as a 32 bit
integer according to the following format.

Mantissa i Exponent
Byte3 | Byte 2 I Byte 1 Byte 0
Bt 716] [0

The mantissa is formed by the most significant 25 bits giving 7 digits of precision (0 to $+
9999999%). All seven digits are used in the representation of any mantissa. The exponent is
located in the least significant 7 bits of the 32 bit word and has a range of $+ 63%. Under these
guidelines, 1.57 would be written as a mantissa of +1570000 and an exponent of +1.

1.13.13 Double Precision Bit Layout The double precision fioating point data which has yet to
be implemented will be stored as two 32 bit integers according to the following format.

Mantissa | Exponent
Byte7 | Byweé | Bye5 | Byed4 | Bye3 | Bye2 | Bytel Byie 0
3] [8[7] _ fo

The mantissa is formed by the most significant 55 bits giving 16 digits of precision (0 to $+-
9999999999999999%). All sixteen digits are used in the representation of any mantissa. The
exponent is located in the least significant 9 bits of the 64 bit field and has a range of $+- 2555.
Under these guidelines, $-9.9734 times 10 sup -65 would be written as a mantissa of
-9973400000000000 and an exponent of -11.

1.13.1.4 Half Precisions 1 and 2 Bit Layout The half precision 1 and 2 floating point
representations are similar to the 32 bit single precision float with the exception that the mantissa
is only 8 bits in width. Half precision 1 uses a base 10 exponent representation and half
precision 2 a base 2 exponent representation. The base 10 representation sacrifices accuracy for

39

VIDF June 1, 1998

a larger dynamic range. while the base 2 representation gives greater preciston but has a smaller
dynamic range.

The storage format is show below.

Mantissa | Exponent
Byte i Byte 0
| 716] 10

The mantissa is formed by the most significant 8 bits giving 2 digits of precision and a range of
(O to $+- 128%). Both digits are used in the representation of the mantissa. The exponent is
located in the least significant 7 bits of the 32 bit word and has a range of $+- 638.

1.13.1.5 Half Precision 3 Bit Layout The half precision 3 floating point representation is 16 bits
in length with a 9 bit Mantissa and 7 bit exponent. It uses a base 2 exponent representation.

The storage format is show below.

Signs | Exponent Mantissa
Byte 1 Byte O
1514]13] [8]7] [0

Of the two sign bits, bit 15 is the exponent sign bit and bit 14 is the mantissa sign bit.

1.13.1.6 Floating Point Error Conditions There are three error conditions that are recognized by
the IDFS floating point conversion routine. All are indicated in the O state of the integer
representation (0 mantissa magnitude, O exponent magnitude). The four possible zero states are
shown below together with the conditions that they represent.

(STATE FLOAT: MANTISSA AND EXPONENT MAGNITUDES =0

MANTISSA | EXPONENT GENERIC ACQUISITION
SIGN I SIGN CONDITION RETURN VALUE

+ + valid data 0.0
+ - not a number 0.0
- + positive infinity largest + value
- - negative infinity largest - value

40

VIDF June 1, 1998

1.13.2 DATA BIT LENGTH

This VIDF entry is an array of length NUMBER OF SENSORS and gives the bit length
of each measurement associated with the IDFS sensors. Sensors which have data formats 0 or 1
can have any bit length from 1 to 32, while sensors which use floating point formats must have
the bit lengths associated with the appropriate IDFS floating point representation as listed in the
table under that section.

All IDFS data is stored on 1, 2 or 4 byte boundaries (8, 16, 32 bits). That is to say that 13
bit data is all stored as 16 bit data with only the lower 13 bits valid. The IDFS-wide bit length is
determined from the largest bit length defined in both the DATA BIT LENGTH and
ANCILLARY BIT LENGTH VIDF entries.

There is an exception to the above. Bit lengths less than § bits are closest packed into an §
bit word. Data which is 1 bit in length is packed 8 per byte, data which is 2 bits is packed 4 per
byte, while 3 and 4 bits are packed 2 per byte. Any larger bit lengths are packed 1 per byte.

Such packing has been largely superseded by using VIDF defined algorithms to strip out
the data. This allows arbitrary bit packing within any 8, 16 or 32 bit word. When using this
scheme to store data the DATA BIT LENGTH for the sensor being packed is the total number of
bits it contains.

The Data Bit Length is used by the generic software to mask off the valid data and when
dealing with lookup tables to compute the necessary table size.

The SENSOR BIT LENGTH VIDF entry begins with the array format specification. For
this entry this is m M N where M is the number of IDFS sensors and N is the number of values
per line. An optional comment field may follow. This line is followed by one or more lines each
of which begins with the line specification format b followed by up to M values and an optional
comment field.

Sample DATA BIT LENGTH entry:

m77 /* Data Bit Lengths */
b 16 16 12 16 16 14 10 /* 0-6 */

1.13.3 DATA STATUS

This VIDF entry is an array of length NUMBER OF SENSORS and gives an overall
status for each defined measurement in the IDFS. There are three recognized states which are
defined below.

0 - sensor is inoperative and any data returned should be ignored

41

VIDF June 1, 1998

1- sensor is operating nominally

3- sensor is operating erratically and data may be questionable

The DATA STATUS VIDF entry begins with the array format specification. For this
entry this is m M N where M is the number of IDFS sensors and N is the number of values per
line. An optional comment field may follow. This line is followed by one or more lines each of
which begins with the line specification format b followed by up to M values and an optional
comment field. The DATA STATUS field block begins with the line

Sample DATA BIT LENGTH entry:

m77 /* Data Status *f
b 1 1 1 1 0 1 3 /* 0-6 o7

1.13.4 TIME CORRECTIONS

The TIME CORRECTIONS VIDF entry is an array of length NUMBER OF SENSORS
and contains an overall time cormrection in milliseconds for each sensor. The corrections are used
to allow for small temporal shifts to data within a VIDF which may not fully align in time to the
beginning time of the IDFS data record. The correction is applied on access of the data.

The TIME CORRECTIONS VIDF entry begins with the array format specification. For
this entry this is m M N where M is the number of IDFS sensors and N is the number of values
per line. An optional comment field may follow. This line is followed by one or more lines each
of which begins with the line specification format 1 followed by up to M values and an optional
comment field.

Sample TIME CORRECTIONS entry:

m77 /* Time Corrections L7
| 0 0 0 10 0 0 0 /* 0-6 L7

1.14 THE ANCILLARY DATA INFORMATION FIELDS

The last four VIDF fields in the VIDF BODY section are each an array of size NUMBER
OF ANCILLARY, The give information concerning the ancillary data contained within the
IDFS. This data is used by the generic software in obtaining and processing the ancillary data.

42

VIDF June 1, 1998

1.14.1 ANCILLARY USAGE

If the NUMBER OF ANCILLARY DATA SETS eniry in the VIDF is zero then there are
no defined status ancillary data in the IDFS definition. In this case this is a null entry. The entry
begins with the format character n and may be followed by an optional comment field.

Sample Null ANCILLARY USAGE entry:

n /* NO Ancillary Data */

If the NUMBER OF ANCILLARY DATA SETS entry in the VIDF is not zero then this
VIDF entry an array of length NUMBER OF ANCILLARY DATA SETS and indicates how the

ancillary is mapped onto the sensor or associated scan data. It is really only pertinent when the
data has a sensor format of SCAN with a SCAN LENGTH greater than 1.

Ancillary data sets are associated directly with the sensor data in a sensor set. Each
defined ancillary data set is repeated for each sensor in a sensor set. While at times redundant
this allows for each returned sensor to have unique ancillary data values available for application.

There is an assumed 1-1 association between the sensor data and the data in an ancillary
data set. When the ancillary data in an ancillary data set has less elements in it than the sensor
data, as may happen in the situation where a single ancillary data value is valid for all elements
in a scan of data, this field indicates how many successive elements in the sensor data each
ancillary data value applies to.

It should be noted that the VIDF does not contain a field which gives the number of
elements in an ANCILLARY DATA set. This field is used by the generic software to compute
that value and it may vary throughout an IDFS data set.

The values in this field can have any value from O to the sensor scan length. For data
defined to have a SCALAR FORMAT the values must either be 0 or 1.

The value 0 is reserved and indicates that an ancillary data set contains only a single value
which is to be applied to each of the sensor measurements. For sensors containing SCAN data,
this this is equivalent to setting the field to the value found in the SCAN LENGTH VIDF entry.

While scalar sensors only consist of a single element, multiple instances of the
measurement can be placed within a single sensor set. The case when there are multiple
measurements defined for a single sensor set and the ANCILLARY USAGE is set to 0 is the
same as for a scanning sensor; there is one value in the ancillary data set which is applied to each
scalar value in the sensor set as it is retrieved. In the case when the ANCILLARY USAGE is set
to 1 there must be one ancillary data value for each of the scalar measurements within the sensor
set.

The following two examples are used to illustrate the usage of this field.

43

VIDF June 1, 1998

1.14.1.1 Example-1 A sensor with a scan length 19 has a calibration set associated with it with
an ANCILLARY USAGE value of 3. Each element in the ancillary data set will then apply to 3
elements in the sensor data. The first ancillary data value will apply to the first 3 sensor
elements, the next ancillary data value to the next 3 and so on. There must be 7 ancillary values
in the complete set with the last ancillary value acting only on last sensor element.

1.14.1.2 Example-2 A scalar sensor has 12 successive measurements in each sensor set and an
ancillary data set associated with it with an ANCILLARY USAGE value of 0. There is only one
ancillary data value in the ancillary data set which will be applied to each sensor measurement.
Had the value been set to 1 there would have been 12 ancillary values, one for each
measurement.

The ANCILLARY USAGE VIDF entry begins with the array format specification. For
this entry this is m M N where M is the number of IDFS sensors and N is the number of values
per line. An optional comment field may follow. This line is followed by one or more lines each
of which begins with the line specification format b followed by up to M values and an optional
comment field.

Sample ANCILLARY USAGE entry:

m33 f Ancillary Usage Lengths L/
b 0 0 3 1* 0-2 *f

1.14.2 ANCILLARY BIT LENGTH

If the NUMBER OF ANCILLARY DATA SETS entry in the VIDF is zero then there are
no defined status ancillary data in the IDFS definition. In this case this is a null entry. The entry
begins with the format character n and may be followed by an optional comment field.

Sample Null ANCILLARY BIT LENGTH entry:

n /¥ NO Ancillary Data */

If the NUMBER OF ANCILLARY DATA SETS entry in the VIDF is not zero then this
VIDF entry an array of length NUMBER OF ANCILLARY DATA SETS and contains the bit
length associated with each ancillary data set. Ancillary data like sensor data is stored in one of
the 3 fixed IDFS-wide data bit lengths (8, 16 or 32), this value is determined from the maximum
bit length defined in the ANCILLARY BIT LENGTH and DATA BIT LENGTH VIDF
entries.

All ancillary is considered to be stored as unsigned integers.

VIDF June 1, 1998

The ANCILLARY BIT LENGTH VIDF entry begins with the array format specification.
For this entry this is m M N where M is the number of IDFS sensors and N is the number of
values per line. An optional comment field may follow. This line is followed by one or more
lines each of which begins with the line specification format b followed by up to M values and an
optional comment field.

Sample ANCILLARY BIT LENGTH entry:

m33 Ik Ancillary Bit Lengths o/
b 7 8 5 /* 0-2 */

1.14.3 ANCILLARY TARGETS

If the NUMBER OF ANCILLARY DATA SETS entry in the VIDF is zero then there are
no defined status ancillary data in the IDFS definition. In this case this is a null entry. The entry
begins with the format character n and may be followed by an optional comment field.

Sampie Null ANCILLARY TARGETS entry:

n /* NO Ancillary Data */

If the NUMBER OF ANCILLARY DATA SETS entry in the VIDF is not zero then this
VIDF entry an array of length NUMBER OF ANCILLARY DATA SETS and defines the target
data type (sensor or scan) with which the ancillary data is associated. For SCALAR data this can
only be sensor data as there is no associated scan values.

The integer field value definitions for this entry are shown in the table below.

ANCILLARY TARGET DEFINITIONS
ANCILLARY eI EUON]
0 Sensor data
1 Scan data

Note that within an IDFS data record, ancillary data must be laid down with ancillary data sets
targeted to the scan data preceding those that apply to sensor data. This should be manifested in
the ANCILLARY TARGET field entries.

The ANCILLARY TARGET VIDF entry begins with the array format specification. For
this entry this is m M N where M is the number of IDFS sensors and N is the number of values

45

VIDF June I, 1998

per line. An optional comment field may follow. This line is followed by one or more lines each
of which begins with the line specification format b followed by up to M values and an optionatl
comment field.

Sample ANCILLARY TARGET entry:

m33 T Ancillary Targets *f
b | 0 0 T 0-2 */

1.15 VIDF Table Definition Block

A VIDF Table Definition consists of 15 fields which together fully describe the table, its
function, and its dependencies. Each table definition can contain a mixture of lookup tables and
sets of polynomial coefficients. Within a table definition each IDFS sensor may have one or
more lookup tables or sets of polynomial coefficients associated with it (not both types). When
there are muiti lookup tables or polynomial sets associated with a sensor the one chosen for use
is determined by the value of a selected IDFS status byte.

If the VIDF entty under NUMBER OF TABLES is zero there will be no TABLE
DEFINITION BLOCK within the VIDE. If it is non-zero there will be NUMBER OF TABLES
instances of the TABLE DEFINITION BLOCK.

The following table shows the generic outline of a VIDF Table Definition block, listing all
of the fields in the order required. Each of these fields will be described in detail in the next
sections.

In the table the FORMAT CHAR column gives the expected line specification format
which should be the first field in all lines for the listed entry. The ENTRY SIZE column
indicates the number of values expected in the field. If the field is blank then only one value is
expected, otherwise the entry should be considered to be an array entry and must be preceded in
the VIDF by the array format line. In most cases the field size, when given, will be the value of
another VIDF entry. In this case the size is designated by the ENTRY ID of that VIDF entry.
The ENTRY ID column gives the identifier as used in the read_idf generic routine to specify the
VIDF entry from which data is to be accessed.

VIDF TABLE DEFINITION BLOCK FORMAT

FORMAT ENTRY ENTRY
CHAR SIZE ID

ENTRY

FUMBER OF TABLE SCALE PARAMETERS 1 _TBL_SCA_SZ

INUMBER OF TABLE VALUES | _TBL_ELE_SZ

46

VIDF June I, 1998
l VIDF TABLE DEFINITION BLOCK FORMAT
FORMAT ENTRY ENTRY
2S¢ CHAR SIZE ID
TABLE TYPE b _TBL._TYPE
NUMBER OF TABLE COMMENT LINES S _TBL_DESC _LEN
TABLE COMMENT BLOCK t _TBL_DESC_LEN _TBL_DESC
TABLE APPLICATION b _TBL_VAR
TABLE EXPANSION b _TBL_EXPAND
NUMBER OF CRITICAL ACTION VALUES I _CRIT_ACT_SZ
CRITICAL STATUS BYTES b _NSEN _CRIT_STATUS
CRITICAL SENSOR OFFSETS s _NSEN _CRIT_OFF
CRITICAL TABLE OFFSETS 1 _CRIT_ACT_SZ _CRIT_ACTION
_NSEN
TABLE FORMAT b “STATUS _TBL_FMT
_NSEN
TABLE OFFSETS 1 “STATUS _TBL_OFF
TABLE VALUE SCALES b abs(_TBL_SCA_SZ) _TBL_SCA
TABLE VALUE 1 NUMBER OF TABLE VALUES |_TBL

1.16 THE VIDF TABLE DEFINITION BLOCK DESCRIPTIONS

Here begins a detailed discussion of each entry in the VIDF TABLE DEFINITION
BLOCK. Discussed will be the format of each entry, what it means, when it should be changed,
and how it is used by the Generic IDFS Software.

1.16.1 NUMBER OF TABLE SCALE PARAMETERS

The first entry in the VIDF Table Definition Block determines the number of scaling
parameters defined within the Table Definition (TABLE VALUE SCALES entry) and how they
are to be applied to the actual table values (TABLE VALUE entry) within the Table Definition.
It is the absolute value of this entry gives the number of elements. There are three formats to this

entry.

>0 The entry value gives the total number of scaling parameters in the table definition.
Under this definition there will be one scaling value for each table value present. The
two VIDF entries NUMBER OF TABLE SCALE PARAMETERS and the next
entry NUMBER TO TABLE ELEMENTS must be identical.

There is no set of scaling parameters present in the table definition and all table values

are assumed to be scaled as entered. This is used primarily used when the the table
being defined is an ASCII look up table.

47

VIDF June 1, 1998

<0 There is one scaling parameter given for each defined IDFS sensor or for each defined
IDFS status byte depending on TABLE VARIABLE entry. The former applies if
VIDF entry TABLE VARIABLE is any value but 4 or 5. The scaling value for each
IDFS sensor or IDFS status byte is used for for all the table elements defined for that
sensor or status byte. When a negative entry value is used, it must either be
-NUMBER OF SENSORS or -NUMBER OF STATUS BYTES

The generic IDFS software uses this entry in parsing a VIDF Table Definition and in
determining how to apply the scaling parameters to the table values to get absolute units.

The NUMBER OF TABLE SCALING PARAMETERS VIDF entry begins with the line
specification format 1 followed by an integer value according to the above definition and then by
an optional comment field.

Sample NUMBER OF TABLE SCALING PARAMETERS entry:

b -6 /* Number Scaling Parameters */

1.16.2 NUMBER OF TABLE VALUES
This VIDF entry in the VIDF Table Definition Blocks gives the total number of entries in
the TABLE VALUES entry within the Table Definition.

The NUMBER OF TABLE VALUES entry begins with the line specification formatl. It
is followed by an integer value and then by an optional comment block.

Sample NUMBER OF TABLE VALUES entry:

b 256 /* Number Table Values %/

1.16.3 TABLE TYPE

This VIDF entry in the Table Definition Block defines the type of table being defined.
There are five VIDF Table classifications from which to choose from. Each is associated with an
integer value identifier. These are described below.

0- The table values are all integers. Each unscaled table vaiue is is a 4 byte integer. This
is the most common type of table representing probably 90% of all defined tables. The
scaled values are used as lookup parameters or polynomial coefficients in algorithms
which take IDFS data to physical units.

48

VIDF June 1, 19938

1- The table values are all ASCII strings each of which must less than or equal to 20
characters in length. Each string is bracketed by a set of double quotes. They are
stored in 21 byte fields in the binary version of the VIDF with the last byte being a
NULL (string terminator).

2- The table values are all integers as in definition €. The difference here is that there is
one lookup table or set of polynomial coefficients per scan step. This entry then
specifies to the generic software that multiple lookup tables or sets of polynomial
coefficients must be read from the TABLE DEFINITION. This table type is used in
cases were each step in a scanning sensor requires a unique expansion or correction.

3- The table is a time based table and must contain only sets of polynomial coefficients.
The first 5 elements in any set of polynomial coefficients are reserved. In order these
must be: the base year, day, millisecond, nanosecond and unit time base indicator. The
unit time base indicator determines the time units into which the base time is
converted. The possible base unit indicator values are listed in the table below together
with their definitions. The resolutions column gives the resolution of the time used in
the conversion.

| TIME BASE ELEMENT DEFINITION
TIME BASE DEFINITION RESOLUTION
0 Years milliseconds
1 Days milliseconds
2 Hours milliseconds
3 Minutes milliseconds
4 Seconds nanoseconds
5 Milliseconds nanoseconds
6 Microseconds nanoseconds
7 Nanoseconds nanoseconds

The input into the polynomial is the difference between the cument IDFS
measurement time and the base time in the units indicated. The output can be used in
any defined VIDF algorithm.

Note that the a year time base assumes all years to be 365 days in length. The
computation of the difference does, however, take into account leap years.

4 - The table is a time based table identical to table type 3 but with the capability of table
type 2 added on top of that. In this implementation there is only one set of base times
per set of polynomial coefficients for a given sensor. These precede the first defined
polynomial.

There is a restriction on the placement of tables in the VIDF based on TABLE TYPE, that

49

VIDF June 1, 1998

being, that tables with a tbl_type value of 2 must be placed after all other tables, (ie. must be the
last tables in the VIDF).

The TABLE TYPE entry begins with the line specification format b. It is followed by an
integer value and then by an optional comment block.

Sample TABLE TYPE entry:

b 0 /* Straight Table Values */

1.16.4 NUMBER OF TABLE COMMENT LINES

This field the VIDF Table Definition Block specifies the number of lines of comments in
the TABLE COMMENT BLOCK VIDF entry which follows this one. The entry begins with
the line specification format s. This is followed by an integer specifying the number of comment
lines to follow and then an optional comment field. The generic IDFS software uses this entry in
parsing the Table Definition Block.

Sample NUMBER OF TABLE COMMENT LINES entry:

s 4 f* # Of Comments */

1.16.5 TABLE COMMENT BLOCK

This VIDF entry in the VIDF Table Definition forms the Table Comment Block. If the
number of table comment lines specified in the previous entry is 0 then the Table Comment
Block is empty and has the form;

Sample Empty TABLE COMMENT BLOCK entry:

n /* NO Comments */

This is not normally the case. The comment block is treated as an array of N lines of text,
where N is the value specified in the NUMBER OF TABLE COMMENT LINES entry. The
first line of the comment block is always the array format specification. This has the formm N 1
where N is the number of comment lines to follow. An optional comment field may be added to
the line. Following this line are N lines of comments. Each line begins with the line
specification format t foilowed by up to 79 characters text. An optional comment block may
follow this. The comment block generally is a brief description of the table contents and usage.

Sample TABLE COMMENT BLOCK entry:

50

VIDF June 1, 1998

m 41 /* Comments */
t TABLE 00 /* C000 *f
t * C001 */
t This table contains a the lookup table which takes the raw /* C002 */
t to units or counts per accumulation period 7* €003 */

1.16.6 TABLE APPLICATION

The TABLE APPLICATION entry in the VIDF Table Definition indicates the functional
dependence of the defined table. There are two broad categories of data to which a table may be
applied; raw or processed data. Both categories have sub-classifications. The possible table
application values are listed in the table below together with their definitions.

TABLE APPLICATION FIELD DEFINITIONS
VALUE DEFINITION

-N Table is a function of raw calibration set N - 1
0 Table is a function of raw sensor data

1 Table is a function of current processed data
2 Table is a function of raw scan step data

4 Table is a function of raw mode_index

5 Table is a function of processed mode_index
6 Table is a function of raw quality flag data

The TABLE APPLICATION entry informs the generic IDFS software how to obtain
apply a table. If the table is a function of processed data then the input values to the lockup table
or polynomial is obtained from the current processed data buffer. In the case when the table(s) in
the Table definition are lookup tables, the processed data is rounded to an integer value before
application. If the table is a function of raw IDFS data then the data from the indicated source is
used as input into the table or polynomial.

The TABLE APPLICATION entry begins with the line specification format n. It is
followed by an integer value and then by an optional comment block.

Sample TABLE APPLICATION entry:

s 0 /* Table Application - Raw */

51

VIDF June 1, 1998

1.16.7 TABLE EXPANSION

This entry in the VIDF Table Definition indicates if a polynomial based table which is
being applied to raw data should be expanded into a lookup table when first accessed and used
then as a lookup table in all IDFS algorithm applications. The entry value definitions are shown
in the table below.

TABLE EXPANSION DEFINITIONS
VALUE DEFINITION
0 Keep as polynomial coefficients and apply as such |
1 Expand to lookup table format

This field is ignored if the table entries for a given sensor are already in look up format
(TABLE FORMAT = 0O for that sensor) or if the TABLE APPLICATION field indicates that
the table is a function of processed data.

The creation of a lookup table form a polynomial is a hold over from the days when
computer speed was a general concern, which it rarely is today. The expansion of a set of
polynomial coefficients into a lookup table was done under the assumption that it is much
quicker to use a precaiculated value in an expression then to have to calculate the value each time
it is used. With present computer speeds this delay is often negligible and in most cases now the
expand flag left at 0.

The TABLE EXPANSION entry begins with the line specification format b. It is
followed by an integer value and then by an optional comment block.

Sample TABLE EXPANSION entry:

s O /* No table expansion */

1.16.8 NUMBER OF CRITICAL ACTION VALUES
This entry in the VIDF Table Definition Blocks gives the number of values in the

CRITICAL ACTION VIDF entry. If the size is O then there is no Critical Action definition in
this table and the next three Table Definition entries will be null entries.

The critical action fields allow for a VIDF algorithm to switch between tables contained in
the Table Definition real time based on the current values of selected IDFS status bytes.

The critical action algorithms are not accessible for tables which have TABLE
APPLICATION field values of 4, 5 or 6. These tables should always have a NUMBER OF
CRITICAL ACTION VALUES value of 0.

The NUMBER OF CRITICAL ACTION VALUES entry begins with the line

52

VIDF June 1, 1998

specification format s. It is followed by an integer value and then by an optional comment block.

Sample NUMBER OF CRITICAL ACTION VALUES entry:

s 12 /¥ Critical Action Size */

1.16.9 CRITICAL STATUS BYTES

If the NUMBER OF CRITICAL ACTION VALUES entry in the VIDF Table Definition
is zero then there are no defined CRITICAL STATUS BYTES for this table definition. In this
case this is a nuil entry. The line begins with the line specification format n and may be followed
by an optional comment block.

Sample Nuil CRITICAL STATUS BYTES entry:

n /¥ NO Critical Sensor Offsets */

If the NUMBER OF CRITICAL ACTION VALUES entry in the VIDF Table Definition
is non-zero then this field is an array of NUMBER OF SENSORS and holds the number of the
IDFS status bytes which should be used to switch between the various lookup tables or sets of
polynomial coefficients defined for each sensor in this table definition. If an IDFS sensors does
not require the use of a CRITICAL STATUS BYTE (uses a single or no table} then the value of
their CRITICAL STATUS BYTE entry should be set to -1.

The CRITICAL STATUS BYTE entry begins with the line m M N where M is the
number of defined IDFS sensors and N is the number of values one each entry line. An optional
comment field may follow on the line. This line is followed by one or more lines of values.
Each of these lines begins with the line specification format b followed by up to M values and an
optional comment field.

Sample CRITICAL BYTE STATUS: entry

m55 /* Sensor Status Bytes */
b 0 -1 -1 1 -1 /* S0 *f

1.16.10 CRITICAL SENSOR OFFSETS

If the NUMBER OF CRITICAL ACTION VALUES entry in the VIDF Table Definition
is zero then there are no defined CRITICAL SENSOR OFFSETS for this table definition. In
this case this is a null entry. The line begins with the line specification format n and may be

53

VIDF June 1, 1998

followed by an optional comment block.

Sampie Null CRITICAL SENSOR OFFSETS entry:

n /* NO Critical Status Bytes */

If the NUMBER OF CRITICAL ACTION VALUES in the VIDF Table Definition entry
is non-zero then this field is an array of NUMBER OF SENSORS and holds the offset into the
CRITICAL TABLE OFFSETS entry for each sensor with a defined CRITICAL STATUS
BYTE entry. If a sensor has a -1 for its CRITICAL STATUS BYTE VIDF Table Definition
entry value it should also have a -1 for its CRITICAL TABLE OFFSET entry value.

Each CRITICAL SENSOR OFFSET entry value which is non-negative is an offset into
the array of CRITICAL TABLE OFFSET values to the starting element of the CRITICAL
TABLE OFFSET values defined for the critical status byte associated with the sensor.

The CRITICAL STATUS OFFSET entry begins with the line m M N where M is the
number of defined IDFS sensors and N is the number of values one each entry line. An optional
comment field may follow on the line. This line is followed by one or more lines of values.
Each of these lines begins with the line specification format b followed by up to M values and an
optional comment field.

Sample CRITICAL SENSOR OFFSET: entry
m35 [* Sensor Critical Offsets w7
b 0 -1 -1 6 -1 /¥ S0 */

1.16.11 CRITICAL TABLE OFFSETS

If the NUMBER OF CRITICAL ACTION VALUES entry in the VIDF Table Definition
is zero then there are no defined CRITICAL TABLE OFFSETS for this table definition. In this
case this is a null entry, The line begins with the line specification format n and may be followed
by an optional comment block.

Sample Null CRITICAL SENSOR OFFSETS entry:

n /* NO Critical Table Offsets */

If the NUMBER OF CRITICAL ACTION VALUES enuay in the VIDF Table Definition
is non-zero then this field is an array of integers of NUMBER OF CRITICAL ACTION

54

VIDF June 1, 1998

VALUES. The entry consists of one or more arrays of pointers into the TABLE VALUES entry.
Each array is of identical length to the VALID STATUS RANGE entry value for the Critical
Status Byte value it represents. Each pointer in the array points to the beginning of a lookup
table or set of polynomial coefficients which are to be used when the Critical Status Byte has the
value equivalent to the offset of the pointer in its Critical Action Array Duplicate pointer values
are all right.

To illustrate the full usage of the entries dealing with the switching between tables in the
Table Definition consider the following example. A transformation of a sensor’s telemetry
values to physical units requires a set of lookup tables, the correct lookup table depending on the
instrument gain. The instrument gain has been saved as one of the IDFS status bytes. It gain has
four states. The CRITICAL STATUS BYTE entry for the sensor would indicate the Gain Status
Byte as its critical status byte. In the CRITICAL SENSOR OFFSETS entry, the value for this
sensor would be an offset into the CRITICAL TABLE OFFSET entry to the beginning of the
four element array of values each of which is itself a pointer intc the TABLE VALUES entry.
Each of the four CRITICAL TABLE OFFSET values points to to the beginning of one of the 4
four lookup tables required to take the telemetry to physical units.

If S is the sensor number requiring the critical action and V is is the current Gain Status
value then the table required begins at location

TABLE OFFSET = CRITICAL TABLE OFFSET [CRITICAL SENSOR OFFSET[S] + V]

in the TABLE VALUE entry.

The CRITICAL TABLE OFFSET entry begins with the line m M N where M is the
number of defined IDFS sensors and N is the number of values one each entry line. An optional
comment field may follow on the line. This line is followed by one or more lines of values.
Each of these lines begins with the line specification format b followed by up to M values and an
optional comment field.

Sample CRITICAL TABLE OFFSET entry

mi26 /* Sensor Critical Offsets)
b 0 0 256 256 512 512 [* 0-5 */
b 0 256 512 768 768 0 /* 6-11 */

1.16.12 TABLE FORMAT -

This entry in the VIDF Table Definition is an array of NUMBER OF SENSORS values
unless the TABLE APPLICATION entry is a 4 or 5 in which case it is an array of NUMBER
OF STATUS BYTES values. Each value defines whether the table values associated with a
given sensor constitute a lookup table(s) or a set(s) or polynomial coefficients. Values in the
TABLE FORMAT entry have the following definitions:

55

VIDF June 1, 1998

-1- the sensor had no defined table values in the TABLE VALUES entry;

0- the values in the TABLE VALUES entry associated with this sensor form lookup
table(s) each of length 25EVSOR BIT' LENGTH,

N - the values in the TABLE VALUES entry associated with this sensor constitute set(s)
of N polynomial coefficients;

The TABLE FORMAT entry begins with the line m M N where M is the number of
defined IDFS sensors and N is the number of values one each entry line. An optional comment
field may follow on the line. This line is followed by one or more lines of values. Each of these
lines begins with the line specification format b followed by up to M values and an optional
comment field.

Sample TABLE FORMAT entry:
mS55 /* Sensor Table Formats &/
b 0 -1 5 3 0 [* 0-4 */

1.16.13 TABLE OFFSETS

This entry in the VIDF Table Definition is an array of NUMBER OF SENSORS values
unless the TABLE APPLICATION entry is a 4 or 5 in which case it is an array of NUMBER
OF STATUS BYTES values. Each value in the field is an offset into the TABLE VALUES field
in the Table Definition to the beginning of a valid table for the sensor it represents. If a sensor
has a value of -1 in the TABLE FORMAT field then it should also have a -1 here.

Multiple sensors can have offsets to the same location in the TABLE VALUE field. If a
sensor has a defined Critical Status Byte, the TABLE OFFSET value for that sensor can point to
any of the valid tables defined for it. The actual table selected in usage in the end will depend on
the value of the Critical Status Byte.

The TABLE OFFSET entry begins with the line m M N where M is the number of
defined IDFS sensors and N is the number of values one each entry line. An optional comment
field may follow on the line. This line is followed by one or more lines of values. Each of these
lines begins with the line specification format b followed by up to M values and an optional
comment field.

Sample TABLE FORMAT entry:

mS35 /¥ Sensor Table Offsets *f
b 0 0 256 512 0 /* 0-4 'S

36

VIDF June 1, 1998

1.16.14 TABLE VALUE SCALES

If the NUMBER OF TABLE SCALE PARAMETERS enuy in the VIDF Table
Definition is zero then there are no defined TABLE VALUE SCALES for this table definition. In
this case this is a null entry. The line begins with the format character n and may be followed by
an optional comment block.

Sample Null TABLE VALUE SCALES entry:

n /¥ NO Table Scaling */

If the NUMBER OF TABLE SCALE PARAMETERS entry in the VIDF Table
Definition is non-zero then this field is an array of integers of the size of the absolute value of the
NUMBER OF TABLE SCALE PARAMETERS entry value.

If the NUMBER OF TABLE SCALE PARAMETERS entry is positive then there is a
1-1 correspondence between the TABLE VALUE SCALES values and the values in the TABLE
VALUES entry. These values give the power of 10 scaling needed to convert the integer TABLE
VALUES 1o floating point values. They are applied as

VALUE]i] = TABLE VALUES][i] * 105CALE VALUEL]

If the NUMBER OF TABLE SCALE PARAMETERS is negative then there is a single TABLE
YALUE SCALES value for each sensor and that value is applied to all TABLE VALUES values
which are applicable to the sensor. The application is as above without the 1-1 correspondence
indicated in the indices.

The TABLE VALUE SCALES entry begins with the line m M N where M is the number
of defined IDFS sensors and N is the number of values one each entry line. An optional
comment field may follow on the line. This line is followed by one or more lines of values.
Each of these lines begins with the line specification format b followed by up to M values and an
optional comment field.

Sample TABLE VALUE SCALES entry:

mS55 ke Scaling: 1 per Sensor */
b -1 -1 -1 -1 -1 * 0-4 */

57

VIDF June |, 1998

1.16.15 TABLE VALUE

The last entry in the VIDF Table Definition is an array of NUMBER OF TABLE
VALUES. The values constitute the the sum total of all of the tables and sets of polynomial
coefficients or ASCII strings defined under this Table Definition. Integer values are converted to
floating point values by using the TABLE VALUE SCALE field values as explained above.

The TABLE VALUES enuoy begins with the line m M N where M is the number of
defined IDFS sensors and N is the number of values one each entry line. An optional comment
field may follow on the line. This line is followed by one or more lines of values. Each of these
lines begins with the line specification format b followed by up to M values and an optional
comment field.

Sample TABLE VALUES entry using integer values. This is the look up table which converts
telemetry to counts per accumulation period for the DE-1 HAPI experiment.

m2565 /¥ Table Values */
| 0 0 0 10 15 /* 00000-00004 */
I 45 50 55 60 65 /* 00010-00014 %/
i 70 80 80 90 90 /* 00015-00019 #/
1 100 100 110 110 120 /* 00020-00024 ¥/
i 120 130 130 140 140 /* 00025-00029 */
1 150 150 160 170 180 /* 00030-00034 */
1 190 200 210 220 230 /* 00035-00039 */
1 240 250 260 270 280 /& 00040-00044 */
1 290 300 310 330 350 /¢ 00045-00049 */
| 370 390 410 430 450 /> 00050-00054 */
1 470 490 510 530 550 /* 00055-00059 */
1 570 590 610 630 660 /* 00060-00064 */
| 700 740 780 820 860 /* 00065-00069 */
1 900 940 980 1020 1060 /* 00070-00074 */
1 1100 1140 1180 1220 1260 /* 00075-00079 */
1 1320 1400 1480 1560 1640 /* 00080-00084 */
1 1720 1800 1880 1960 2040 /* (00085-00089 */
1 2120 2200 2280 2360 2440 /¢ 00090-00094 */
1 2520 2640 2800 2960 3120 /* 00095-00099 */
1 3280 3440 3600 3760 3920 /¢ 00100-00104 ¥/
1 4080 4240 4400 4560 4720 /*+ 00105-00109 */
1 4880 5040 5280 5600 5920 /* 00110-00114 */
| 6240 6560 6880 7200 7520 /¢ 00115-00119 */
| 7840 8160 8480 8800 0120 /* 00120-00124 */
1 9440 9760 10080 10560 11200 /* 00125-00129 ¥/

58

VIDF

et fed ket fwed et et et sk pemed et pmasd et femd (el jmad pueml fed Jumt uwed bt et el et et pemd

11840 12480 13120 13760
15040 15680 16320 16960
18240 18880 19520 20160
22400 23680 24960 26240
28800 30080 31360 32640
35200 36480 37760 39040
42240 44800 47360 49920
55040 57600 60160 62720
67840 70400 72960 75520
80640 844380 89600 94720
104960 110080 115200 120320
130560 135680 140800 145920
156160 161280 168960 179200
199680 209920 220160 230400
250880 261120 271360 281600
302080 312320 322560 337920
378880 399360 419840 440320
481280 501760 522240 342720
583680 604160 624640 645120
716800 757760 798720 839680
921600 962560 1003520 1044480
1126400 1167360 1208320 1249280
1351680 1433600 1515520 1597440
1761280 1843200 1925120 2007040
2170880 2252800 2334720 2416640
2580480

14400
17600
21120
27520
33920
40320
52480
65280
78080
99840
125440
151040
189440
240640
291840
358400
460800
563200
675840
880640
1085440
1290240
1679360
2088960
2498560

Sample TABLE VALUES entry using ASCII string entry values.

mloé4

T
T
T
T

"Seek Off"
"Normal Op"

"No Pwr Check"

“FPSV OK"

"Seek On" "Tracking Off"

"Failure"

"Power Check"

"Bad FPSV"

"Power QK"

"Monitors OK"

"BMSPI OK"

1.17 VIDF Constant Definition Block

A VIDF Constant Definition consists of 5 entries. Unlike tables definitions which can hold
several tables of various formats per IDFS sensor, a Constant Definition holds only one value per
IDFS sensor and all values must represent the same quantity.

If the VIDF entry under NUMBER OF CONSTANTS is zero there will be no

59

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

June 1, 1998

00130-00134
00135-00139
00140-00144
00145-00149
00150-00154
00155-00159
00160-00164
00165-00169
00170-00174
00175-00179
(00180-00184
00185-00189
00190-00194
00195-00199
00200-00204
00205-00209
00210-00214
00215-00219
00220-00224
00225-00229
00230-00234
00235-00239
00240-00244
00245-00249
00250-00254
00255

/* Table Values

"Tracking On" /* 000-003
"Power Exceeded" /* 004-007
"Monitor Error" /* 008-011
"Bad BMSPI" /* 012-015

*
*/
*/
*
*/
*f
*
*/
*/
*
*/
*/
*
*f
*
*
*/
*/
*/
*/
*/
*/
*
*/
*/
*/

*/
¥
*
*
*/

VIDF June 1, 1998

CONSTANTS DEFINITION BLOCK within the VIDF. If it is non-zero there will be
NUMBER OF CONSTANTS instances of the CONSTANTS DEFINITION BLOCK.

The following table shows the generic outline of a VIDF Constant Definition block, listing
all of the fields in the order required. Each of these fields will be described in detail in the next
sections.

In the table the FORMAT CHAR column gives the expected line specification format
which should be the first field in all lines for the listed entry. The ENTRY SIZE column
indicates the number of values expected in the field. If the field is blank then only one value is
expected, otherwise the entry should be considered to be an array entry and must be preceded in
the VIDF by the array format line. In most cases the field size, when given, will be the value of
another VIDF entry. In this case the size is designated by the ENTRY ID of that VIDF entry.
The ENTRY ID column gives the identifier as used in the read_idf generic routine to specify the
VIDF entry from which data is to be accessed.

VIDF CONSTANT DEFINITION BLOCK FORMAT
FORMAT ENTRY ENTRY

HaEiee CHAR SIZE ID
CONSTANT ID 1 —CONST_ID
NUMBER OF CONSTANT COMMENT LINES| s —CONST_DESC_LEN
CONSTANT COMMENT BLOCK t | CONST DESC_LEN| CONST DESC
CONSTANT VALUE SCALES b |_SEN “CONST SCA
CONSTANT VALUES | _SEN ~CONST

1.18 THE VIDF CONSTANT DEFINITION BLOCK DESCRIPTIONS

Here begins a detailed discussion of each entry in the VIDF CONSTANT DEFINITION
BLOCK. Discussed will be the format of each entry, what it means, when it should be changed,
and how it is used by the Generic IDFS Software.

1.18.1 CONSTANT ID

The first entry in the VIDF Constant Definition Blocks identifies the constant to the
generic IDFS software as being a generic constant (one which not called out for in any generic
IDFS software routine) or one which may be used in some to the generic IDFS routine if
available.

There are no required constant definitions within the IDFS paradigm. If a constant which
is needed for an computation within the IDFS generic software is not found, either the
computation will be skipped or substitute values will be used, but the program will not quit
prematurely. There are no constants used either in the access of IDFS data or in their
conversions to physical units.

60

VIDF June 1, 1998

The one specific example where constants are used is in the automatic computation of
pitch angles. This computation requires the existence of the three constants defining the sensor
normal vector to the instrument aperture. If these are not present then the pitch angles are simply
not computed.

The CONSTANT ID numeric values and their definitions are shown in the following
table.

CONSTANT ID DEFINITIONS
VALUE DEFINITION

Generic
Elevation angle (angle measured from +Z)
Azimuthal angie offsets
Azimuthal field of view (FWHM)
Initial aperture elevation angle
Final aperture elevation angle
X component of aperture normal vector
Y component of aperture normal vector
Z component of aperture normal vector
Elevation field of view (FWHM)

(o]

S| oo ~J| O) B W B —

Of the above the Azimuthal Angle Offsets (ID = 2), when presents, is used in each IDFS
read to compute any offsets in the returned spin angle for the various sensors.

The CONSTANT ID VIDF entry begins with the line specification format b followed by
an integer vatue according to the above definition and then by an optional comment field.

Sample CONSTANT ID entry:

1 2 /* 1D is Azimuthal Offset */

1.18.2 NUMBER OF CONSTANT COMMENT LINES

This field the VIDF Constant Definition Block specifies the number of lines of comments
in the CONSTANT COMMENT BLOCK VIDF entrty which follows this one. The entry
begins with the line specification format s. This is followed by an integer specifying the number
of comment lines to follow and then an optional comment field. The generic IDFS software uses
this entry in parsing the Constant Definition Block.

61

VIDF June 1, 1998

Sample NUMBER OF CONSTANT COMMENT LINES entry:

5 4 /¥ # Of Comments */

1.18.3 CONSTANT COMMENT BLOCK

This VIDF entry in the VIDF Constant Definition forms the Constant Comment Block. If
the number of table comment lines specified in the previous entry is 0 then the Constant
Comment Block is empty and has the form;

Sample Empty CONSTANT COMMENT BLOCK entry:

n [* NO Comments */

This is not normally the case. The comment block is treated as an array of N lines of text,
where N is the value specified in the NUMBER OF CONSTANT COMMENT LINES entry.
The first line of the comment block is always the array format specification. This has the form m
N 1 where N is the number of comment lines to follow. An optional comment field may be
added to the line. Following this line are N lines of comments. Each line begins with the line
specification format t followed by up to 79 characters text. An optional comment block may
follow this. The comment block generally is a brief description of the constant contents and
usage.

Sample VIDF CONSTANT COMMENT BLOCK:

m 41 /* Comments */
t CONSTANT 00 /x C000 #
t /x C001 ¥/
t This is the instrument azimuthal offsets. The instrument is located /¥ C002%/

t 43.25 degrees clockwise from the satellite sun sensor. fx C003 #

1.18.4 CONSTANT VALUE SCALES

This entry in the Constant Definition Block is an array of NUMBER OF SENSORS
values. These values give the power of 10 scaling needed to convert the integer CONSTANT
VALUES to floating point values. They are applied as

VALUE[i] = CONSTANT VALUESIi] * 105CAt® VALUEG

62

VIDF June 1, 1998

where i is the sensor number.

The CONSTANT VALUE SCALES entry begins with the line m M N where M is the
nurnber of defined IDFS sensors and N is the number of values one each entry line. An optional
comment field may follow on the line. This line is followed by one or more lines of values.
Each of these lines begins with the line specification format b followed by up to M values and an
optional comment field.

Sample CONSTANT VALUE SCALES entry:

mS55 i Scaling: 1 per Sensor */
b -2 -2 -2 -2 -2 = 0-4]

1.18.5 CONSTANT VALUES

The last entry in the VIDF Constant Definition is an array of NUMBER OF SENSORS.
Integer values are converted to floating point values by using the CONSTANT VALUE SCALE
field values as explained above.

The CONSTANT VALUES entry begins with the line m M N where M is the number of
defined IDFS sensors and N is the number of values one each entry line. An optional comment
field may follow on the line. This line is followed by one or more lines of values. Each of these
lines begins with the line specification format 1 followed by up to M values and an optional
comment field.

Sample CONSTANT VALUES: field:

m55 i Constant Values */
1 4325 4325 4325 4325 4325 [* 00000-00004 L

1.19 Example VIDF

The following is an example VIDF file taken from the RPEA IDFS definition for the
ROPE experiment on the TSS-1R mission.

t Tethered Satellite /* mission

t TSs - 1 /* spacecraft
t Satellite Electron and Ion Measurements /* exp_desc

t Satellite Mounted Electron Sensors (RPEA) /* inst_desc
m 51 /* contact

t Dr. J. David Winningham /* 00000

63

*/
*/
*/
*/
*/
*/

VIDF | June 1, 1998

t Southwest Research Institute /* 00001 */
t 6220 Culebra Road /* 00002]
t San Antonio, Texas 78284 /* 00003 */
t david@pemrac.space.swri.edu /* 00004 */
s 51 /* num_comnts */
m 511 /* comments */
t TSS:TSS-1R:ROPE:ROPE:RPEA /* 000 */
t /* 001 */
t This wvirtual consists of data from the three satellite mounted /* 002 */
£ electron SPES sensors. Sensors are mounted at an azimuthal angle /* 003 */
t of 135 degrees from the science boom and at polar angles of 0, 45 /* 004 */
t and 85 degrees (sensors 0, 1, and 2 respectively). /* 005 */
t /* 006 */
t The following is a list of tables which are in this wvidf /* 007 */
t TABLE O0: Center energies (eV) /* 008 =*/
t TABLE 1: Telemetry decom table /* 009 */
t TABLE 2: l/{detector efficiencies) /* 010 */
t TABLE 3: Geometry factors (cm**2-str) /* 011 */
t TABLE 4: dE/E /* 012 */
£ TABLE 5: Conversion factor taking eV to ergs /* 013 */
t TABLE 6: Conversion factors to distribution func {g**3/km**6&) /* 014 */
t TABLE 7: statistical poisson corrections to count-rate /* 015 */
t TABLE 8: Conversion of dis £n from (s**3/km**6) to (g**3/cm**6) /* Q16 */
t TABLE 9: Conversion of dis fn from (s**3/km**6) to (s**3/m**6) /* 017 */
t TABLE 10: Table of value 2/m {gm-1) used in E->V conversion /* 018 */
t TABLE 11: Conversion of cm to m /* 019 */
t TABLE 12: Conversion of cm to km /* 020 */
t TABLE 13: Ascii definitions of instrument mode /* 021 */
t /* 022 */
t The following is a list of constant definitions which contained in /* 023 */
t this vidf /* 024 */
t CONST 0: Polar elevation angles /* 025 */
t CONST 1: Azimuthal cffset angles (from 0 degree marker) /* 026 */
t CONST 2: Aperature Normal X coordinates /* 027 */
t CONST 3: Aperature Normal Y coordinates /* 028 */
t CONST 4: Aperature Normal Z coordinates /* 029 */
t /* 030 */
t The following are some of the units which can be derived from the /* 031 */
t included tables. The format is to give the tables applied followed /* 032 */
t by the operations and unit definition. WNote that for brevity we /* 033 */
t represent the table sequence 1,7,2,3,4 by T_S1 and the operation /* 034 */
t sequence 0,3,153,4,4 by 0_51. /* 035 */
t /* 036 */
t DATA SEN TABLES OPERS UNITS /* 037 */
t Scan all 0 0 eV /* 038 */
t Scan all 0,5,10 0,3,63 cm/sec /* 039 */
t Scan &l11 0,5,10,11 0,3,63,3 m/sec /* 040 */
t Scan all 0,5,10,12 0,3,63,3 km/sec /* 041 */
t Sen all 1 0 cnts/accum /* 042 */
£ Sen all 1,7.,2 0,3,3 cnts/accum (eff. cor) /* 043 */

64

VIDF

HHHauEadurorSdoorrrge o rsrRruoun 0o eRrnoO ROt

Sen all
Sen all
Sen all
Sen all
Sen all
Sen all
Sen all
1954

= o O

(Vs]

Vo)

[|
pRRgasr
mnmnhiniina-=
g v i

SR WERERRONDEOWNREDOR

0
11
HVPS Voltage State
11
2
31
Electron Sensor, Spectrometer 3
Electron Sensor, Spectrometer 4
Electron Sensor, Spectrometer 5

31

Raw Telemetry: No Fill Data

Raw Telemetry: Partial Fill Data
Raw Telemetry: Questicnable

0
[13]

SS-1R

w E H e g e
“88%
QGQ

2 0,3,153

65

cnkts/sec
cnts/{cm**2-str-s)

June 1, 1998

/* 044
/* 045

cnts/{(cm**2-str-s-eV) /* 046
ergs/{cm**2-str-s-eV) /* 047

gsec**3/km**6
sec**3/m**6
sec**3I/cm**6

/* 048
/* 049
/* 050

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/‘*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/t
/'k
/*
/*
/*
/*
/'A‘
/*
/*
/*
/*
/*
/*
/*

ds_year
ds_day
ds_msec
ds_usec
de_year
de_day
de_msec
de_usec
smp_id
sen_mode
n_gual
cal_sets
num_tbls
num_consts
status
pa_defined
sen
swp_len
max_nss
data_len
fili_flg
£ill value
da_methed

status_names

00000
states
00000
sen_name
00000
00001
00002
cal_names
qual_name
00000
00001
00002
pa_format
pa_project
pa_mission
pa_exper
pa_inst
pa_vinst
pa_bxbybz

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
>/
*/
*/
*/
*/

VIDF June 1, 1998

) 0 1 2 /* BX-BY-BZ */
s 1 /* pa_apps */
m 11 /* pa_tbls */
s 1 /* tables L7
m 11 /* pa_ops */
s 0 /* opers */
m 3 3 /* d_type */
b 0 0 0 /* 00000-00002 */
m 33 /* tdw_len */
b 8 8 8 /* 00000-00002 */
m 3 3 /* sen_status */
b 1 1 1 /* 00000-00002 */
m 3 3 /* time_off */
1 0 0 0 /* 00000-00002 */
n /* cal_use */
n /* cal_wlen &
n /* cal_target */
1 -3 /* tbl_sca_sz */
1 128 /* tbl_ele_sz */
B 0O /* tbhl_type */
s 2 /* num comnts */
m21 . /* tbl_desc */
t TABLE 00 /* 000 */
t This table contains the center energies in eV /* 001 */
b 2 /* tbl_var */
b 0 /* tbl_expand */
10 /* crit_act_ele */
n /* erit_status */
n /* crit_sen_off */
n /* crit_offs */
m 33 /* tbl_fmt */
b 0 0 0 /* 00000-00002 */
m 33 /* tbl_off L
1 0 0 0 /* 00000-00002 */
m 3 3 /* tbl_sca */
b -3 -3 =3 /* 00000-00002 */
m 128 5 /* tbl */
1 27500000 25212500 23125000 21212500 19450000 /* 00000-00004 */
1 17837500 16350000 15000000 13750000 12612500 /* 00005-00009 */
1 11562500 10600000 9725000 8912500 8175000 /* 00010-00014 */
1 7500000 6875000 6300000 5787500 5300000 /* 00015-00019 */
1 4862500 4462500 4087500 3750000 3437500 /* 00020-00024 */
1 3150000 2887%00 2650000 2437500 2225000 /* 00025-00029 */
1 2050000 1875000 1725000 1575000 1450000 /* 00030-00034 */
1 1325000 1216250 1115000 1022500 937500 /* 00035-00039 */
1 B60000 788750 723750 662500 607500 /* 00040-00044 */
1 557500 511250 468750 430000 393750 /* 00045-00049 */
1 361250 331250 303750 278750 256250 /* 00050-00054 */
1 235000 215000 197250 180876 165876 /* 00055-0005%8 */
1 152126 139500 127874 117262 107526 /* 00060-00064 */

66

VIDF June 1, 1998

98612 90426 82924 76038 69724 /* 00065-00062 */

63950 58638 53776 49312 45212 /* 00070-00074 */

41462 38026 34876 31976 29324 /* 00075-00079 */

26888 24662 22612 20738 19012 /* 00080-00084 */

17438 15988 14662 13450 12330 /* 00085-00089 */

11308 10368 9508 8720 7996 /* 00090-0009%4 */

7332 7174 6166 5656 5184 /* 00095-000%9 */

4756 4360 3998 3666 3362 /* 00100-00104 */

3084 2828 2592 2378 2180 /* 00105-00109 */

2000 1834 1682 1542 1414 /* 00110-00114 =*/

1296 1188 1090 1000 918 /* 00115-00119 ~*/

842 772 708 648 596 /* 00120-00124 */

546 500 450 /* 00125-00127 */

-3 /* tbl_sca_sz */

256 /* thl_ele_sz */

0 /* tbl_type */

2 /* num comnts */
21 /* tbhl_desc L/
This table contains the decompress from telemetry to /* 00000 */

counts per acumulation period /* 00001 Lig

0 /* tbhl_var ey

0 /* tbl_expand */

¢ /* crit_act_ele */

/* erit_status */
/* crit_sen_off */

iR RRRRERERERHERHSTE 23 FHS S0 RTOTE 0T H R e

/* crit_offs */

33 /* tbhl_fmt L7/
0 1] 0 /* 00000-00002 */

33 /* thl_off */
0 v] 0 /* 00000-00002 */

33 /* tbl_sca */
0 0 0 /* 00000-00002 */

256 5 /* thl iy
0 0 1 2 3 /* 00000-00004 */

4 5 6 7 8 /* 00005-00009 */

9 10 11 12 13 /* 00010-00014 */

14 15 16 17 i8 /* 00015-00019 */

19 20 21 22 23 /* 00020-00024 */

24 25 26 27 28 /* 00025-00029 */

29 30 31 33 35 /* 00030-00034 */

37 39 41 43 45 /* 00035-00039 */

47 49 51 53 55 /* 00040-00044 */

57 59 61 64 68 /* 00045-00049 */

72 76 80 84 88 /* 00050-00054 */

92 96 100 104 108 /* 00055-00055 */

112 ile 120 124 130 /* 00060-00064 */

138 146 154 162 170 /* 00085-00068 */

178 186 194 202 210 /* 00070-00074 */

218 226 234 242 250 /* 00075-00079 */

262 278 294 310 326 /* 00080-00084 */

67

VIDF June 1, 1998

1 342 358 374 390 406 /* 00085-00089 */
1 422 438 454 470 486 /* 00090-00094 */
1 502 526 558 590 622 /* 00095-00089 */
1 654 686 718 750 782 /* 00100-00104 */
1 814 846 878 910 942 /* 00105-00109 */
1 974 1006 1054 1118 1182 /* 00110-00114 */
1 1246 1310 1374 1438 1502 /* 00115-00119 */
1 1566 1630 1694 1758 1822 /* 00120-00124 =*/
1l 1886 1950 2014 2110 2238 /* 00125-00129 */
1 2366 2454 2622 2750 2878 /* 00130-00134 */
1 3006 3134 3262 3390 3518 /* 00135-00139 */
1 3646 3774 3902 4030 4222 /* 00140-00144 */
1 4478 4734 4990 5246 5502 /* 00145-00149 */
1 5758 6014 6270 6526 6782 /* 00150~-00154 */
1 7038 7294 7550 7806 8062 /* 00155-00159 */
1 8446 8958 9470 9982 104954 /* 00160-00164 */
1l 11006 11518 12030 12542 13054 /* 00165-00169 */
1 13566 14078 14590 15102 15614 /* 00170-00174 */
1 16126 16894 17918 18942 19566 /* 00175-00179 */
1 20990 22014 23038 24062 25086 /* 00180-00184 */
1 26110 27134 28158 29182 30206 /* 00185-00189 */
1 31230 32254 337980 35838 37886 /* 00190-001%94 */
1 39934 41982 44030 46078 48126 /* 00195-00199 */
1 50174 52222 54270 56318 58366 /* 00200-00204 */
1 60414 62462 64510 67582 71678 /* 00205-00209 */
1 75774 79870 83966 BB0E2 92158 /* 00210-00214 */
1 96254 100350 104446 108542 112638 J* 00215-00219 */
1l 116734 120830 124926 129022 135166 f* 00220-00224 */
1 143358 151550 159742 167934 176126 /* 00225-00229 */
1 184318 192510 200702 208894 217086 /* 00230-00234 */
1 225278 233470 241662 249854 258046 /* 00235-00239 */
1 270334 286718 303102 319486 335870 /* 00240-00244 */
1 352254 368638 385022 401406 417790 /* 00245-00249 */
1 434174 450558 466942 483326 459710 /* 00250-00254 */
1 516094 /* 00255 */
i -3 /* tbl_sca_sz *3
1 768 /* tbl_ele_sz */
b 0 /* tbl_type */
s 4 /* num comnts */
m 41 /* tbl_desc */
t This table contains channeltron l/efficiency as a function of the /* Q00 */
t of energy step. There are 6 f£ill tables. The lst three are valid /* 001 */
t when the HV bias is in the low state and the 2nd three are valid /* 002 */
t when the HV bkias is in the high state. /* 003 */
b 2 /* tbhl_var */
b 0 /* tbhl_expand */
1l 6 /* crit_act_ele */
m 3 3 /* erit_status */
b 0 1] 0 /* 00000-00002 */
m 33 /* crit_off */

68

VIDF

PHEREHRRHERRMHRERERRHRRREAERRHRRRBRRRRERRRARRRRRRRERRRRPRrEBr B =308 ~~5u0

33

33

768 7

2021448
1756511
1548139
1387461
1266222
1177143
1115835
1076736
1056170
1047459
1044657
1044186
1044359
1044695
1044919
1045062
1045146
1045193
1045220
1823408
1600422
1427035
1285092
1198002
1125593
1084631
1059579
1048345
1044572
1043891
1044170
1044584
1044875
1045108
1045229
104529%
1045337
1896511
1657666

-6

1979574
1723391
1522589
1367593
1250926
1166947
1108832
1072821
1054367
1046806
1044502
1044196
1044443
1044733
1044544
1045077
1045154
1045198
1045252
1787981
1572651
1405960
1279388
11870939
1121831
10798951
1057288
1047478
1044355
1043901
1044230
1044637
1044938
1045130
1045242
1045306
1045341
1858773
1627971

384

128

-6

1939263
1691646
1497732
1348862
1237806
1157134
1102421
1069244
1052775
1046257
1044384
1044217
1044487
1044768
10445867
1045091
1045162
1045203
2018487
1754097
1546141
1385769
1264743
1175799
1114573
1075581
1055210
1046746
1044189
1043926
1044291
1044687
1044972
10451590
1045253
1045312
1045345
1822371
1599566

128

256

-6

1900316
1660790
1473706
1330730
1224162
1147877
1096501
1066013
1051385
1045758
1044258
1044244
1044531
1044802
1044989
1045103
1045169
1045207
1976708
1721044
1520641
1365938
1249472
1165618
1107582
1071688
1053441
1046130
1044067
1043962
1044352
1044735
1045003
1045168
1045264
1045318
1045385
1786972
1571817

512

18624869
1631012
1451232
1313277
1212005
1139106
1090955
1063134
1050176
1045418
1044241
1044278
1044573
1044834
1045009
1045115
1045176
1045210
1936479
1689363
1495832
1347247
1236373
1155818
1101183
1068135
1051883
1045617
10439881
10440086
1044412
1044781
1045032
1045185
1045274
1045324
2017296
1753116
1545328

69

1825963
1602527
1428803
1296622
1199377
1130876
1085825
1060604
1049130
1045107
1044205
1044316
10446186
1044842
1045028
1045126
1045182
1045214
1897611
1658569
1471852
1329141
1222750
1146572
10985276
1064832
1050528
1045193
1043927
10440586
1044471
1044824
1045059
1045201
1045283
1045328
1975542
1720050
1519848

/*
/*

256 /*

/*

/*

/*

/*

/*

/*

/*

/*
1750463
1574701
1407689
1280852
1188458
1123102
1081127
1058282
1048227
1044856
1044188
1044356
1044656
1044893
1045045
1045136
1045188
1045217
1859841
1628851
1449421
1311718
1210611
1137813
1089748
1062080
1049355
10448459
1043898
1044111
1044528
1044865
1045084
1045216
1045291
1045333
1935346
1688434
1495059

June 1, 1998

00000-00002
crit_action
0C000-00004

00005

tbl_fmt
00000~00002
thl_off
00000-00002
tbl_sca
00000-00002

tbl
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'k
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

000-006
007-013
014-020
021-027
028-034
035-041
042-048
049-055
056-062
063-069
070-076
077-083
084-090
091-097
098-104
105-111
112-118
119-125
126-132
133-139
140-146
147-153
154-160
161-167
168-174
175-181
182-188
189-155
196-202
203-209
210-216
217-216
224-216
231-216
238-2186
245-216
252-216
259-216
266-216

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

VIDF

T N S el ol = e e e e e e e e e e I e e S e ol el el e e e e o

1471099
13284595
1222176
1146042
1054778
1064494
1050184
10445855
1043788
1043987
1044468
1044856
1045112
1045266
1045354
1045404
18657584
1636683
1454513
1315698
1212088
1138676
1088876
1058553
1042987
1036307
1033900
1033206
1033080
1033106
1033151
1033186
1633208
1033221
1033238
1695292
1500054
1349965
1237159
1156086
10558835
1064449
1045412
1036910
1033822
1032954
1032839
1032915
1033003
1033067

1448685
1311084
1210045
1137287
1089257
1061654
1043026
1044626
1043772
1044061
1044531
1044900
1045139
1045282
1045363
1045409
1833053
1607875
1432505
1298980
1200837
1130196
1083451
1055552
1041617
1035784
1033737
1033167
1033080
1033112
1033157
10331%0
1033210
1033222
1905214
1664502
1476105
1331884
12242009
1146267
1093661
1060784
1043647
1036237
1033611
1032911
1032845
1032928
1033014
1033074

1426316
1294470
1197443
1125072
1084148
1059165
1048031
1044364
1043777
1044129
1044592
1044911
1045165
1045297
1045372
1045413
1797574
1579897
1410872
1282814
1188552
1122221
1078453
1052833
1040412
1035330
1033599
1033138
1033081
103311¢
10331e2
1033193
1033213
1033224
1867110
1634487
1453093
1314152
1210735
1137445
1087730
1057521
1042135
1035658
1033436
1032880
1032854
1032542
1033024
1033081

1405257
1278777
1186546
1121314
1079474
1056888
1047178
1044161
1043800
1044197
1044650
1044981
1045188
1045310
1045379
1045418
1763116
1552519
1390660
1267288
1177901
1114688
1073784
1050417
1039355
1034947
1033485
1033116
1033084
1033126
1033168
10331587
1033215
1033225
1830446
1605740
1430730
1297468
1199204
1128979
1082317
1054542
1040795
1035162
1033292
1032859
1032864
1032955
1033034
1033087

1385082
1264142
1175253
1114061
1075112
1054823
1046463
1044010
1043835
1044266
1044706
1045017
1045210
1045323
1045386
1045422
1729898
1527134
1370516
1252500
1166865
1107640
1069466
1048284
1038428
1034618
1033391
1033101
1033088
1033127
1033173
1033200
1033216
1033226
1785041
1577820
1409140
1281332
11872490
1121016
1077332
1051853
1039619
1034738
1033176
1032845
1032876
1032968
1033043
1033082

70

1365265
1248881
1165077
1107074
1071229
1053068
1045861
1043901
1043882
1044335
1044759
1045051
1045230
1045334
1045393
1045465
1697615
1501970
1351579
1238560
1157347
1101005
1065521
1046320
1037617
1034338
10332315
1033090
1033083
1033139
10323177
1033203
1033218
1033227
1760656
1550897
1388569
1265835
1176606
11134895
1072678
1049456
1038590
1034379
1033083
1032839
1032888
1032980
1033052
1033098

1346588
12358720
1155282
1100680
1067686
1051524
1045364
1043829
1043938
1044402
1044809
1045083
1045249
1045345
1045398
1907979
1666760
1477872
1333462
1225586
1147512
1094819
1061837
1044526
1036915
1034102
1033254
1033083
1033098
1033145
1033182
1033206
1033220
1033228
1727507
1525166
1368865
1251074
1165588
1106459
1068377
1047349
1037693
1034076
1033010
1032837
1032901
1032983
1033060
1033102

June 1, 1998

i*
f*
_,l'l*
_."'*
‘,‘*
/*
/*
/*
/*
/*
/*
/*
/*
/*‘
/*
/*
/*
/*
/*
/*
/*
/'k
/*
/*
/*
/*
_.l'l*
.l"l*
ll,n'*
ll,n'*
',i*
_.-'l*
/*
/*
/*
/*
/*
/*
/*
/'k
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

273-216
280-216
287-216
294-300
301-307
308-315
315-322
322-329
329-335
336-342
343-349
350-356
357-363
364-370
371-377
378-384
385-391
392-398
399-405
406-412
413-419
420-426
427-433
434-440
441-447
448-454
455-461
462-468
469-475
476-482
483-489
490-496
497-503
504-510
511-517
518-524
525-531
532-538
539-545
546-552
553-559
560-566
567-573
574-580
581-587
588-594
595-601
602-608
609-615
6l6-622

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*f
*/
*f
*
*/
*/
>k
*/
*/
*/
*/
*/
*d
2ef
*f
*f
*f
*y
*f
*f
L/
*/

VIDF June 1, 1998

1033107 1033111 1033115 1033118 1033122 1033125 1033127 /* 623-629 */
1033130 1033132 10633134 1033136 1033138 1033140 1033141 /* 630-636 */
1033143 1033144 1033159 1504090 1866015 1829386 1794011 /* 837-643 */
1759655 1726535 1694348 1663584 1633595 1604872 1576975 /* 644-650 */
1550075 1524365 1499274 1475346 1452353 1430008 1408436 /* 651-657 */
1388282 1368194 13495308 1331242 1313524 1296853 1280730 /* 658-664 */
1265244 1250494 1236590 1223650 1210185 1198663 1186706 /* 665-871 */
1176080 1165069 1155574 1145761 1136945 1128484 1120526 /* 672-878 */
1113010 1105979 1099360 1093190 1087265 1081857 1076878 /* 675-685 */
1072229 1067935 1064014 1060357 1057103 1054133 1051455 /* 686-692 */
1049068 1046971 1045045 1043222 1041792 1040464 1039300 /* 693-689 */
1038284 1037398 1036628 1035967 1035400 1034915 1034503 /* 700-706 */
1034156 1033863 1033620 1033419 1033255 1033121 1033015 /* 707-713 */
1032931 1032866 1032818 1032784 1032760 1032746 1032739 /* T14-720 */
1032739 1032743 1032752 1032763 1032776 1032791 1032807 /* 721-127 */
1032824 1032841 1032858 1032875 1032892 1032908 1032923 /* 728-734 */
1032838 1032542 1032966 1032978 1032990 1033002 1033013 /* 735-741 */
1033022 1033032 1033040 1033049 1033056 1033063 10330695 /* 742-748 */
1033076 1033081 1033086 1033091 1033095 1033099 1033103 /* 749-755 */
1033107 1033110 1033113 1033115 1033118 1033120 1033122 /* 756-762 */

1033124 1033126 1033128 1033129 1033146 /* T63-767 */
2 /* tbl_sca_sz */
2 /* thl_ele_sz i
0 /* tbl_type */
2 /* num comnts L)
21 /* tbl_desc ey
This table contains the detector geometry factors as /* 00000 */
{cm**2-3) ; /* 00001 LYy
2 /* tbl_var L3/
0 /* thl_expand */
0 /* crit_act_ele */

/* crit_status */
/* crit_sen_off */

CoO o RHRRITHREODE DD PO TH G T R b b e b ke e e e e e e e b e e

/* crit_offs */

33 /* tbl_fmt */
1 1 i /* 00000-00002 */

33 /* tbl_off */
0 1 1 /* 00000-00002 */

22 /* tbl_sca */
-10 -14 /* 00000-00001 =/

22 /* thl w177
1260 1375 /* 00000-00001 */

1 /* tbl_sca_sz L 3/]
1 /* thl_ele_sz */
0 /* tbl_type L/
1 /* num comnts */
11 /* tbl_desc a7
This table contains the energy resolution (dE/E)} /* 00000 */
2 /* tbl_var */
0 /* tbl_expand */

71

VIDF

BoripobodrRotdtoor g RrRREOCEREODEBEBD RGP adHUuDrRrrR,EB O ~HEEYd9 9 R

0
33
1 1 1
33
0 0 0
i1
=]
11
151
1
1
0
1
11

This table contains the conversion taking eV to ergs
2
0
0

1602

o -

[
[

This factor contains the mass dependency in computing
distribution (needed since we make computation using the
particle energy and not velocity) and also the necessary
scaling to put units in g**3/km***¢

2

0

L=

W
[N]

w
W

72

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/i-
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'*
/*
/*
/*
/*
/*
/i-
/*
/*
/*
/*

June 1, 1998

crit_act_ele */

crit_status

crit_sen_off

crit_offs
tbl_fmt
00000-00002
tbl_off
00000-00002
thl_sca
000600

tab

00000
tbhl_sca_sz
tbl_ele_sz
tbl_type
num comnts
tbl_desc
00000
tbl_var
tbl_expand

crit_act_ele

crit_status

crit_sen_off

crit_offs
thi_fmt
00000-00002
tbl_off
00000-00002
tbl_sca
00000

tbl

00000
tbl_sca_s=z
tbl_ele_sz
tbl_type
num comnts
thl_desc
00000

00001

00002

00003
tbl_var
tbl_expand

crit_act_ele

crit_status

crit_sen_off

crit_offs
tbl_£fmt
00000-00002
tbl_off

¥
*f
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*f
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

VIDF

June 1, 1998

1 0 /* 00000-00002
m 11 /* tbhl_sca

b -31 /* 00000

m 11 /* thl

1 4149605 /* 00000

1 -3 /* tbl_sca_sz

1 256 /* thl _ele_sz
b 0 /* tbl_type

s 5 /* num comnts
mbS51 /* tbl_desc

t TABLE 07 /* 000
t This table is the ratio between expected count rate as determined /* 001
t wusing Poisson statistics and the measured count rate. 1In this /* 002
t calculation the sample integration pericd is 57ms and the sample /* 003
t periocd is set at 300ms. /* 004
b 0 /* tbl_var

b 0 /* tbl_expand

1 0 /* crit_act_ele
n /* crit_status
n /* crit_sen_off
n /* crit_offs

m 33 /* thl_fmt

b 0 /* 00000-00002
m 33 /* tbl_off

1 0] /* 00000-00002
m 33 /* tbl_sca

b -4 /* 00000-00002
m 256 5 /* tbl

1 00000 00000 10000 10000 10000 /* 0000-0004
1l 10000 10000 10000 10000 10000 /* 0005-0009
1 10000 10000 10000 10000 10000 /* 0010-0014
1 10000 10000 10000 10000 10000 /* 0015-0019
1 10000 10000 10000 10000 10000 /* 0020-0024
1 10000 10000 10000 10000 10000 /* 0025-0029
1 10000 10000 10000 10000 10000 /* 0030-0034
1 10000 10000 10000 10000 10000 /* 0035-0039
1l 10000 10000 10000 10000 10000 /* 0040-0044
1 10000 10000 10000 10000 10000 /* 0045-0049
1l 10000 10000 10000 10000 10000 /* 0050-0054
1 10000 10000 10000 10000 10000 /* 0055-0059
1 10000 10000 10000 10000 10000 /* 0060-0064
1 10000 10000 10000 10000 10078 /* 0065-0069
1 i0078 10078 10078 10078 10078 /* 0070-0074
1 10078 10078 10078 10078 10078 /* 0075-0079
1 10039 10039 10039 10039 10039 /* 0080-0084
1 10039 10039 10039 10039 10039 /* 0085-0089
1 10039 10039 10039 10039 10039 /* 0090-0094
1 10039 10019 10019 10019 10019 /* 0095-0099
1l 10019 10019 10019 10019 10015 /* 0100-0104
1 10019 10019 10019 10015 10019 /* 0105-0109

73

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

VIDF

CHRIEFEBE S RTFatE 0 PR RS MEERER RS R RBR R R R R R

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'A‘
/*
/*
/*
/*
/*
/*

June 1, 1998

0110-0114
0115-0119
0120-0124
0125-0129
0130-0134
0135-0139
0140-0144
0145-0149
0150-0154
0155-0159
0160-0164
0165-0169
0170-0174
0175-0179
0180-0184
0185-0189
0150-0194
0155-015%9%
0200-0204
0205-0209
0210-0214
0215-0219
0220-0224
0225-0229
0230-0234
0235-023%
0240-0244
0245-02489
0250-0254
0255

tbl_sca_sz
tbl_ele_sz
thl_type

num comntcs

10019 10019 10019 10019 10029

10029 10029 10029 10028 10028

10029 10029 10029 10028 10029

10028 10039 10039 10039 10043

10043 10043 10048 10048 10053

10053 10053 10058 10063 10063

10063 10068 10073 10073 10075

10080 10085 10090 10095 10100

10102 10107 10112 10117 10122

10124 10129 10134 10139 10144

10151 10161 10170 10179 10189

10198 10208 10217 10227 10236

10245 10255 10264 10274 10284

10284 10308 10328 10347 10368

10387 10407 10427 10447 10468

10488 10508 10528 10549 10570

10591 10612 10644 10687 10730

10773 10818 10862 10907 10953

10999 11046 11093 11141 11189

11238 11288 11338 11414 11518

11624 11734 11846 11961 12080

12201 12326 12455 12587 12724

12865 13010 13160 13314 13556

13900 14269 14667 15098 15571

16089 16660 17297 18014 18829

19770 20878 22212 23874 26047

31279 00000 00000 00000 00000

00000 00000 00000 00000 00000

00000 00000 00000 00000 00000

00000
1 /*
1 /*
0 />
3 /*
31 /%

TABLE 08

This table contains the conversion factor taking the velocity
distribution function from (s**3/km**6) to (s**3/cm**6)

2 /*
0 /¥
0 /*
/*

J*

/*

33 I*
i 1 1 i

33 Vs
0 0 0 /*

11 Ve
-30 /i

74

tbl_desc

/* 000
/* 001
/* 002

tbl_var
tbl_expand
crit_act_ele
crit_status
crit_sen_off
crit_offs
tbl_fmt
00000-00002
thl_off
00000-00002
tbl_sca
00000

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*f
*/
*/
*
*f
*/
*7
i
*o
*/
*/
*/
>/
*of
*f
*/
*/
*/
*/
*f
*/
>/

VIDF June 1, 1998

m 11 /* £bl */
1 1 /* 00000 *f
1 1 /* tbl_sca_s=z *
1 1 /* tbl_ele_sz */
b 0 /* tbl_type */
s 3 /* num comnts */
m 31 /* tbl_desc *F
t TABLE 0% /* 000 */
t This table contains the conversion factor taking the velocity /* 001 */
t distribution function from (s**3/km**6) to (s**3/m**6) /* 002 */
b 2 /* thl_var */
b 0 /* tbl_expand */
1 0 /* crit_act_ele */
n /* crit_status */
n /* crit_sen_ocff */
n /* crit_offs */
m 3 3 /* thl_fmt */
b 1 1 1 /* 00000-00002 */
m 3 3 /* tbl_off */
1 0 0 0 /* 00000-00002 */
m 11 /* tbl_sca */
b -18 /* 00000 i/
m 11 /* tbl */
1 1 /* 00000 */
1 1 /* tbl_sca_sz */
1 1 /* tbhl_ele_sz */
L 0 /* tbl_type */
s 3 /* num comnts */
m 31 /* tbl_desc Lif/
t TABLE 10 /* 000 */
t This table ceontains the expression 2 / m, where m is the electren /* 001 */
t mass in gm. /* 002 */
b 2 /* tbl_var */
b 0 /* thl_expand Li/]
1 0 /* crit_act_ele */
1 /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt &y
b 1 1 1 /* 00000-00Q02 */
m 3 3 /* tbl_off iy
1 0 0 0 /* 00000-00002 */
m 11 /* tbhl_sca i
b 22 /* 00000 i
m 11 /* thl */
1 219539 /* 00000 */
1 1 /* tbhl_sca_sz */
1 1 /* tbl_ele_sz */
b 0 /* tbl_type */
s 3 /* num comnts Ly

75

o=

VIDF June 1, 1998

m 31 /* tbl_desc */
t TABLE 11 /* 000 */
t This table contains the conversion factor taking cm to meters. /* 001 */
t Primary purpose is conversion of wvelocity /* 002 */
b 2 /* tbl_var */
b 0 /* tbl_expand */
i1 0 /* crit_act_ele */
n /* crit_gstatus */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 1 1 1 /* 00000-00002 */
m 3 3 /* tbl_off L)
1 0) 0 /* 00000-00002 */
m 11 /* tbl_sca */
b -2 /* 00000 */
m 11 /* thl i/
1 1 /* 00000 */
1 1 /* tbl_sca_sz Li]
1 1 /* thbl_ele_sz i
P 0 /* tbl_type */
s 3 /* num comnts */
m 31 /* tbl_desc Ly
t TABLE 12 /* 000 */
t This table contains the conversion factor taking cm to kilometers. /* 001 */
t Primary purpose is conversion of velocity /* 002 */
b 2 /* tbi_var */
L 0 /* thl_expand */
1 0 /* crit_act_ele */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbhl_fmt */
b 1 1 1 /* 00000-00002 */
m 3 3 /* tbhl_off i/
1 0 0 0 /* 00000-00002 */
m 11 /* tbl_sca */
b -5 /* 00000 */
m 11 /* thl */
1 i /* 00000 477
1 0 /* tbl_sca_sz */
1 2 /* tbl_ele_sz Ly
b 1 /* tbl_type Lif/
s 2 /* num comnts i/
m 21 /* tbl_desc Ly
t TABLE 13 /* 000 */
t Ascii definitions of the status states /* 00000 L/
b 4 /* tbl_var */
b 0O /* tbl_expand */
1 0 /* crit_act_ele */

76

o8B uprHrirgEiniuopripgininyriocEgdgnyriviaiaodEdd 808Dy

2 2
"Low"
1

1
11

The polar or elevation angles of sensors in degrees

3 3
-2
3 3
8290

2
1
11

azimuthal mounting angles of

3 3
-2

3
2490

o w

1

WM+ =

3
-4

o W

02

i

[e R

3
-4
3 3
7005
8
1
11

Z component of the aperature

3 3
-4
3 3
1236

"High"

-2

3980

-2

22530

-4

4502

-4

4550

-4

7683

-2

1210

-2

22480

component of the aperature

-4

1487

component of the aperature

-4

1477

-4

9778

gensors in degrees

normals

normals

normals

77

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/i
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/t
/*

June 1, 1998

crit_status

crit_sen_off

crit_offs
tbl_fmt
00000
tbl_off
00000
tbl_sca
tbl
00000-00001
const_id
num_comnts
const_desc
00000
const_sca
0000-0002
const
0000-0002
const_id
num_comnts
const_desc
00000
const_sca
0000-0002
const
0000-0002
const_id
num_comnts
const_desc
00000
const_sca
0000-0002
const
0000-0002
const_id
num_comnts
consgt_desc
00000
const_sca
0000-0002
const
0000-0002
const_id
num_comnts
congt_desc
00000
const_sca
0000-0002
const
0000-0002

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*f
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

VIDF

78

June I, 1998

CONTENTS

dhG) g S S A SO N0aa 0000008 8aca0aG00 008 0a80000000800008880008000880000090 2
1.1 VIDF File FOIMAEt ittt it enansnacecaentoancnsostsosanessne 2
1.2 Building A VIDF File . iciererorearetssassrsoanssssrsasssnnsonnsececsas 3
AbA Ty - bop i B 5 S 1e) B S S S 0 G G 0000 09 000 a0 0o 0000000000000 o Dan D aGa0ag 3
1.4 THE VIDF BODY FIELD DESCRIPTIONSt tsecannsssnsnsannsnsonsoascsas 5

1.4.1 152380 e e GO c o oG o a0 o000 000N cO0c0o 000000 0o Dan oo 0800000 5
1.4.2 1ot b) e S S G oA 0o oG o a Do 00000 a8 0000800000000 0000000 G 6
1.4.3 124,43 4308 S B N S o B DO G a0 D a0 0 0000800008006 000800000 &
1.4.4 VIRTUAL INSTRUMENTctevececessnsssnssnsssansnnnnnsannss 6

e T e B e N T I) (e e e e W e R WU g o= 7
1.5.1 (efo] N e e N e 8 000 0G0 G G0 0Do00 000000000080 Ga0000000000000 S 7

1.6 THE COMMENT BLOCKttt ennnmnncceeronossneensorassssossosnsoonsns 7
1.6.1 NUMBER OF COMMENT LINES @c.iceinnctnevecansvonsoocsan 8
l1.6.2 COMMENT BLOCK @ iii i sttt ecnsassrssssssanssennnnmnnenss 8

1.7 THE VIDF VALID TIME BLOCK cciriiviesioosoasssssasasssnnanas 11
1.7.1 BEGINNING YEARccceeencsean H0DO0Co00000000Ga000a00d 11
1.7.2 BEGINNING DAYcicceccennns S e mesaseare s s e esE s 11
1.7.3 BEGINNING MILLISECONDuiescrieossorosnnsnoanaannncnass 12
1.7.4 BEGINNING MICROSECOND ituovsnstvorasssnsnsonncanns 12
1.7.5 100k 1 e e 07 s e e e S e g oo 0G0 00a00 00000 dntoouoooooaaaae 13
1.7.6 ENDING DAYcieetreeaensnesassassarssasssncsross A0do0g 2k
1.7.7 ENDING MILLISECOND 100000 C0000000000000000660000 13
1.7.8 ENDING MICROSECONDviiiensanasnsennsns 0000DC0DC0000000 14

1.8 THE DATA SPECIFICATION BLOCKitetennccacsacsasaassasansanaan 14
1.8.1 SENSOR FORMAT ... iieitiereoennannatnansasesesssonnnnsnn 14
1.8.2 TIMINGciceieivoasnnansansrsasssnssnssaasossansonss .. 15
1.8.2.1 TIMING VALUE 2 or 6 50000C00000000000000 e 17
1.8.2.2TIMING VALUE 4cvivencecocncsansasonsas 5C0a000 17
1.8.2.3TIMING VALUES 1 AND 5ttt irenensncnnnncas 18

1.9 THE INSTANCES BLOCKSiiesetsssossanmcansacoancoscnasnancannsasss i8

1.9.1 MAXTMUM QUALITY DEFINITION ...t eirivtnertsacracoansanns 18
1.9.2 NUMBER OF ANCILLARY DATA SETE ...t icctiietnsossssnensonnns 15
1.8.3 NUMBER OF VIDF TABLES .. vvusesaronsosssssranasnnsnnennssss 19
1.9.4 NUMBER OF VIDF CONSTANTS ...ttt euannncannancancanrsa 20
1.9.5 NUMBER OF STATUS BYTESicecuiceenacacancananonscaannnnns 20
1.9.6 PITCH ANGLE DEFINEDttt inroreccncsocnnennocaancnns 20
1.9.7 NUMBER OF SENSORSicccereaccescansoscnssncsssosnsncnsns 21
1.10 THE HEADER/DATA INFORMATION BLOCKccevscennncacensnaonnsan 21
1.10.1 MAXIMUM SCAN LENGTH . .vvirroassnossnsnssananansarassasssas 21
1.10.2 MAXIMUM NUMBER OF SENSOR SETScicccessossocsnosnssnns 22
1.10.3 SIZE OF DATA RECORD ... cvtesosnosnansssnsnsssssansansses 22
1.10.4 FILL VALUE DEFINEDcctiteccstoanacaososenancssssaansns 22
2 e Mo I3 O D B 7 N 1 S S S a0 BB 0 0 0 0 000 a6 coc000ac8 060000000000 23
1.10.6 SCAN TIMINGiccriansesacastosssssssosasenasssaacnsas 23
1.10.6.85can Timing Algorithms 000080 oaCD 24
1.10.6.2DATA TIMING FOR ALGORITHM 0veivvvnssossnsscss 24
1.10.6.2DATA TIMING FOR ALGORITHM 1¢4ciicennncennns 25
1.10.6.LATA TIMING FOR ALGORITHM 2 ... ciereenennnannnnns 26
1.10.6.0ATA TIMING FOR ALGORITHM 3cc.ciierenncannn 27

1.11 THE VIDF NAME BLOCK ...t ccteennnmccrcoentsennnrsasossansaranssanss 28
1.11.1 STATUS BYTE DESCRIPTIONSicceiccsccccnccnscnncoancsnns 28
1.11.2 VALID STATUS RANGE :icnteeinemnrorcctncnannannannanss 29
1.11.3 SENSOR DESCRIPTIONS ... itcrrceannrrnnmoancsnenoannncssss 29
1.11.4 ANCILLARY DATA SET DESCRIPTIONSciitiiurermnncnrovsvns 30
1.11.5 DATA QUALITY DESCRIPTIONSt rieisanenecnecennnana 30
1.12 THE PITCH ANGLE DEFINITION BLOCK ... isnessnasansacnscascnsnnsens 31
1.12.1 PITCH ANGLE FORMAT . ..cccvecenccestisssnssansssssscssosasnns 31
1.12.2 MAGNETIC FIELD PROJECT HoCa00000Gd000G0000000000000 32
1.12.3 MAGNETIC FIELD MISSION¢vuiccenscecnecsnenncscnsonanan 32
1.12.4 MAGNETIC FIELD EXPERIMENTccuiiiiieiennernnrnonannnns 33
1.12.5 MAGNETIC FIELD INSTRUMENTcc0vevunnrnnncanennononss 33
1.12.6 MAGNETIC FIELD VIRTUAL INSTRUMENTccccieeteonsns 34
1.12.7 MAGNETIC FIELD COMPONENTS ..iivssvsnssscnnoscsnsrscscasons 34

1.12.9 CONVERSION TABLESicceiceccanecccccnaasaanansnsossens 36
1.12.10 CONVERSION OPERATIONSitcvressccassnnssansssananannss 36
1.13 THE SENSOR DATA INFORMATION FIELDS ...t iceuecencancarnrnacoanaaans 37
1.13.1 SENSOR DATA FORMATot rineorosrossssestostssoncnnmanen 37
1.13.1.Details of the IDFS Floating Point
Representationsccocieeeinececacaaccacacannanns 38
1.13.1.3ingle Precision Bit Layoutccceceecnannn 39
1.13.1.Double Precision Bit Layoutc.c.ccivecenn. 35
1.13.1.#alf Precisions 1 and 2 Bit Layout 38
1.13.1.Malf Precision 3 Bit Layouticiiivecnconsns 40
1.13.1.Floating Peint Error Conditionsccevveeecnnns 40
1.213.2 DATA BIT LENGTH ... cencancnnssnstoovosssasssoannannnns 41
1.13.3 DATA STATUS ...t cutveeenesossssscsnannnmnnsssnnsnancssonss 41
1.13.4 TIME CORRECTIONScuictiecaccnacrasasncnacncoaaananansns 42
1.14 THE ANCILLARY DATA INFORMATION FIELDS Sooaooo R0 00C000000C00 42
1.14.1 ANCILLARY USAGE ... suveeeonvnssssosssnsssssasotossscssnnens 43
1.14. 1. Example-l ...ttt ettitatetisesannnnaanasecesnnoesa 44
1,14, 1. Example=2 ..ttt et istonnnrcanancnasaocasnnasna 44
1.14.2 ANCILLARY BIT LENGTHvcivvesnsnncsosarancsnsssasass 44
1.14.2 ANCILLARY TARGETScitecasnannsns 5000000000 0a000000 . 45
1.15 VIDF Table Definition Blockiiiticicennncananana 0080 O0D0DLaG0 46
1.16 THE VIDF TABLE DEFINITION BLOCK DESCRIPTIONScivieccsncsncss 47
1.16.1 NUMBER OF TABLE SCALE PARAMETERSccecvececcnnncnana 47
1.16.2 NUMBER OF TABLE VALUESc.titiiinnnnranneas GooDoocanDonG 48
3 bRak -] ¥ 2 i i ') e e N S S DD oh G Do D cananan o Ron 0000000000 0a 08000 48
1.16.4 NUMBER OF TABLE COMMENT LINES ...t cseosssnscsssssonssnans 50
1.16.5 TABLE COMMENT BLOCK iuivsessossonssosssossanssssssnsnsans 50
1.16.6 TABLE APPLICATION . .vuseiesvessnsssosssonsssssassnsssassnssoss 51
1.16.7 TABLE EXPANSIONucenrvmtonnonannncnnncnnsnneennnnessn 52
1.16.8 NUMBER OF CRITICAL ACTION VALUES ...i:sssosssasccsssnnsnsn 52
1.16.9 CRITICAL STATUS BYTES ..ttt eteetencencncncnnanansanannnns 53
1,16.10 CRITICAL SENSOR OFFSETS ...cevesssnossossrssrssnnassnssns .. 53

i

1.16.11 CRITICAL TABLE OFFSETSvtrvenvecnonnecaasssssrsonvvss 54

1.16.12 TABLE FORMAT ...t ecnoenoscnnnsansssssssncnuvinsonsasnsss 58
1.16.13 TABLE OFFSETS ...t erencrcanncarennonaracasosssrsssvsves 56
1.16.14 TABLE VALUE SCALESisciruencsncnrnensacosonstonasessonas 57
1.16.15 TABLE VALUEc.0c0cen- D 58
1.17 VIDF Constant Definition Blockv.ieeireinnrnsnnnnacanosananna 59
1.18 THE VIDF CONSTANT DEFINITION BLOCK DESCRIPTIONSccccvecennn 60
1.18.1 CONSTANT ID 0800 000a0000000006000000006000000 60
1.18.2 NUMBER OF CONSTANT COMMENT LINES ...c.tcevcacnncacancnn- 61
1.18.3 CONSTANT COMMENT BLOCK @ ...t iirevinnmrnancsrasvonsnsnssos 62
1.18.4 CONSTANT VALUE SCALES ...t eeuieciirararenacacenacnnasnenas 62
1.18.5 CONSTANT VALUES . ..c.ccuuetonenscnoscssnssononnsnsmnennnnnss 63
ahna B 1R os a N I A 4 Bl s S S S S S B O G0 0 0 G o 00 G0 0o 0Cooad0Co 0000000000000 00 63

v

1. IDFS Algorithms

The prime purpose of the tables defined within a VIDF file is the conversion of raw IDFS
data into physical units. The purpose of this section is to provide a description of how to build
IDFS algorithms which will be executed in the generic IDFS routine convert_to_units.

The building of an IDFS algorithm consists of specifying a number of VIDF tables
together with a defined operation used in the application of each. Tables are applied sequentially
with the results of one operation fed directly into the next table. It is possible to store
intermediate results either in the primary or secondary IDFS algorithm buffers and to perform
higher order operations such as square roots, trigonometric functions, etc.

For any given IDFS the PIDF file generally holds the complete set of identified IDFS
algorithms for the data. This file can be interrogated by programs and the options presented to
the user for selection.

1.1 VIDF Table Operations

The tables contained in the VIDF have one of two formats: lookup tables or sets of
polynomial coefficients. If a table is in lookup table format and if V is the input to the table the
output value (OV) will be

OV = T[(integer)V]

where T is the array of values which make up the lookup table.
If the table is a set of N polynomial coefficients then the output value from the table is

=N-1)
oP= Y AV
i={)

If a table is a function (TABLE APPLICATION entry in the VIDF table definition) of
raw data then the input V into the table will be the IDFS raw data sensor, scan, mode, or quality
data depending on the TABLE APPLICATION entry vaiue. If the table is a function of
processed data then N will be the current contents of the primary or secondary IDFS algorithm
buffer.

1.2 IDFS Operators

The transformation of IDFS data into physical units occurs through successive applications
of tables defined in the VIDF. The results of each table application are combined with the
previous results in one of the two algorithm buffers according to the definition of the IDFS
operator specified to be used with the table. Each IDFS operator is defined by a four digit
number, which follows the general definition as shown below.

GENERAL OPERATOR CODE DEFINITION
FOUR DIGIT OPERATOR CODE

X X X X
Buffer Operation Extended Operation Base Operation

Each valid operator consists of one basic operation followed optional extended operations and/or
buffer operations.

1.3 Usage
All IDFS algorithm operations have the form:

BUF(X) = Extended Operation {BUF(Y) Basic Operation V(Table)]

In the above statement: BUF is one of the IDFS result buffers; X and Y are the buffer
designators; Extended Operation is one of the IDFS extended operations; Basic Operation is
one of the 9 defined IDFS Basic Operations; and V(Table) is the output of the VIDF table. X and
Y can and often do refer to the same buffer. Also note that the Basic Operation is performed
prior to the Extended Operation.

The first operation in any IDFS algorithm is performed using the IDFS primary buffer
which is preloaded with the raw IDFS data being converted.

1.4 Basic Operations

The Basic Operation operator codes {ones place) are listed in the table below. The
symbols in parenthesis can be used in the PIDF in place of the numerical value when listing the
operators used in a defined IDFS algorithm. The symbol can only be used when there is no
extended operation and the primary buffer is the buffer being operated on and the destination
buffer. This is the same as saying that the symbols can be used only when the top three digits in
the IDFS Operation code are zeros.

BASE OPERATOR DEFINITIONS

VALUE

BASE OPERATION

==

equals (=)

addition (+)

subtraction (-)

multiplication (X}

division (/)

logical and (&)

logical or (l)

shift right (>>)

oo | Oy]] W] B —

shift left (<<)

1.5 Extended Operations

The tens and hundreds place define the extended operations. Extended operations are
functional operations which modify the buffer in usage. They are performed after basic
operation has been compieted. The extended operations are shown in the following table. The
value B in formula represents the current BUFFER contents. The x in the VALUE column is one

of the 9 basic operation values.

EXTENDED OPERATIONS
VALUE OPER.P_ATION

1x B
2x log, B
3x 10°
4x log,, B
5x 28
6x sqrt 2
7x cos B (degrees)
8x sin B (degrees)
O9x tan B(degrees)
10x acos (B)
I1x asin (B)
12x atan (B)
13x 1.0/ (B)

EXTENDED OPERATIONS
VALUE OPERATION
14x B * Header Data Accumulation Field (in seconds)
15x B / Header Data Accumulation Field (in seconds)
16x -B
17x B*
18x <AVG SPIN ANGLE>
19x abs(B)
20x B + Start Spin Angle

1.5.1 Buffers

There are two supported buffers for use in any algorithm: the primary buffer and a
temporary buffer. Which buffer is currently in use is indicated by the value of the thousands
place in the operation identifier. Basically if the thousands place is 0, operations are stored in the
primary buffer, if it is 1 the result of an operation is placed in the secondary buffer, and if the
thousands place is either a 3 or a 4, the two buffers are being combined with the result being
placed back into the secondary or primary buffer.

BUFFERS
VALUE BUFFER COMMENTS

Oxxx 1 This is the main output buffer. Values
in this buffer are those returned
after all complete

Ixxx 2 temporary buffer

2xxx 1 operations between buffers 1 and 2 with
the result stored in buffer 1

1.6 Example 1

In this example, IDFS raw sensor data from an E/q particle spectrometer is converted to
units of velocity distribution function (T3/L®). The raw data is 8 bit data and the data is in SCAN
format with a maximum scan length of 128.

The conversion to velocity distribution function is made through the formula

A*R

D = EF+Ey * *2+GF+dT+dEJE

where A is a constant, R is the sensor data in counts per accumulation period, Eff is the energy

dependent detector efficiency, GF is the sensor geometry factor, dT is the accumulation period,
and dE/E is the energy band resolution.

The VIDF has the following tables in it:

VIDF TABLES
NUMBER CONTENTS FORMAT ELEMENTS FUNCTION OF
0 Data To Counts/Accum Lookup 256 Raw Sensor=
1 Efficiencies Lookup 128 Raw Scan
2 Geometry Factors Polynomial | Processed Data
3 dE/E Lookup 128 Raw Scan
4 Constant Value Polynomial 1 Processed Data
5 Takes Raw Scan Data to Ev Lookup 128 Raw Scan

The IDFS routine convert_to_units requires two arrays to be input to it: an array of VIDF
tables to use in the order of application and an corresponding array of operations. For the above
example these two arrays would be:

ARRAY CONTENTS TABLES
ARRAY CONTENTS
TABLE 0,1,23,5,5,4

OPERATORS = 154,/,L.L,/*

The first operation converts the raw sensor telemetry to counts per accumulation. The
second operation divides this value by the efficiency for the energy step being process and then in
an extended operation divides the result by the accumulation period which is obtained from the
IDFS current header record. In the third operation the result is divided by the Geometry factor.
This is a polynomial with only one element which makes it a constant value for each sensor. In
the fourth and fifth operations the Ev¥**2 is divided into the value and finally the resultant value
is multiplied by the constant A. The output buffer is then output to the calling program. Note
that since the input was from a SCAN type sensor, the entire scan is operated on at once and
retmed as a whole.

1.7 Example 2

In this example an IDFS raw sensor data which is 16 bits in length is packed with 3 five bit
data quantities in the LSB and a 1 bit data quantity in the MSB. This example shows how to
strip out any of the individual data pieces.

The VIDF has the following tables in it:

VIDF TABLES
NUMBER] CONTENTS | FORMAT | ELEMENTS | FUNCTION OF
0 Mask Value 15 Polynomial 1 Raw Sensor
1 Mask Value 1 Polynormial 1 Raw Sensor
2 Shift Value 5 Polynomial 1 Raw Sensor
3 Shift Value 10 Polynomial 1 Raw Sensor
4 Shift Value 15 Polynomial 1 Raw Sensor

The IDFS routine convert_to_units requires two arrays to be input to it: an array of VIDF
tables to use in the order of application and an cormresponding array of operations. To retrieve the
four different data quantities within the IDFS sensor the two arrays would be:

ARRAY CONTENTS TABLES
ARRAY CONTENTS GETS
OPEﬁ;gRs (5) Bits 0-4
GPERATORS |73
GPERATORS |73
S TTOEE Bit 15

